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Abstract  
 
In this paper, the quaternion neural network for forecasting the daily solar irradiation is proposed. A 

method to transform the complex valued daily meteorological parameters to quaternion numbers is 

presented. This method gives the opportunity to forecast the daily solar irradiation using one 

quaternion input rather than two inputs, which decrease the input dimension vector. The results are 

obtained for quaternion parameter input that contains the combination of two meteorological 

parameters (the air temperature and the relative humidity, the air temperature and the sunshine duration 

or the relative humidity and the sunshine duration). Comparison with complex valued neural network 

for forecasting the daily solar irradiation shows that the method proposed in this paper is suitable to 

deal with such problem. 

 

Key words: quaternion neural network, daily solar irradiation, forecasting, complex valued neural 

network. 

 

 

1. Introduction  

 

Quaternion Valued Neural Networks (QVNNs) are one of the promising methods for modeling 

nonlinear systems in four dimensions naturally [1, 2, 3, 4, 5, 6, 7]. Quaternion number is a four-

dimensional hypercomplex number system introduced by Hamilton [8, 9]. All the network’s 

parameters (i.e. weighs, bias, inputs and outputs) are quaternion numbers [10] (i.e. they belong to 

Hamiltonian domain  ).  Two main advantages could be obtained when using QVNNs: 1) the 

numbers of inputs and outputs are reduced four times comparing to real valued modeling 

strategy. 2) three other dimension are added to the real valued learning algorithm. In literature, 

the QVNNs have found primordial place in real world application. For instance, Shang and 

Hirose [11] used the QVNN to classify images coming from radar and they prove the QVNN’s 

ability for detecting the lake, grass, forest, and town areas. The adaptive filtering based on the 

QVNN has proposed in [12].  The QVNNs have been applied successfully in image processing in 

[13, 14] and gait recognition using the magnitude and phase of quaternion wavelet transform in 

[15].  The application of QVNN has been investigated to robot manipulator control in [16].  

Wong et al. [17] used the quaternion for the thermal condition monitoring system and the 

application of the quaternions and octonions in mechanics is presented in [18].   

In this paper, the quaternion neural networks are used for forecasting one-day ahead of the daily 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fang%20Shang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hirose,%20A..QT.&newsearch=true
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solar irradiation combining two meteorological parameters (the air temperature and the relative 

humidity, the air temperature and the sunshine duration or the relative humidity and the sunshine 

duration). The quaternion backpropagation algorithm [10], which is the extended version of the 

well-known real valued backpropagation is outlined.  

 

2. Global solar irradiation forecasting and proposition of new method  

 

In literature, several techniques and models have been proposed for forecasting the global solar 

irradiation, where neural networks occupied a great part. In [19, 20, 21, 22, 23, 24, 25, 26], the 

total solar radiation time series simulated using neural networks. The prediction of maximum 

solar radiation using artificial neural networks is presented in [22, 27].The monthly mean daily 

values of global solar radiation on horizontal surfaces prediction using neural networks is 

investigated in [22, 28, 29].  The neural networks have been also used to estimate the daily solar 

irradiation in [30, 31, 32, 33, 34, 35] and the hourly solar irradiation [36, 37, 38, 39, 40, 41, 42, 

43].  

In other recent works [44, 45, 46, 47] a method combining the image processing and the solar 

irradiation is proposed. The idea is to present the solar irradiation with both time indexes (days of 

the year in one axis and the hours of the day in the second axis). The obtained representation will 

be converted to the 2-D gray-scale image that will be further interpreted using image processing 

techniques. 

The complex valued neural network are used to forecast the complex valued global solar 

irradiation (in the daily and the hourly time indexes) of Tamanrasset city (Algeria) in [48] and for 

the whole Maghreb region (in the daily time index) in [49].  In [50], the complex valued wavelet 

neural network has been applied to forecast the daily solar irradiation based on the other 

meteorological data.  For example, in our previous work [48], we have proposed the complex 

valued neural network based forecasting the daily and the hourly solar irradiation. The 

meteorological variables (the daily solar irradiation, the daily temperature, the relative humidity, 

and the sunshine duration) are used as inputs to the network. The better results are obtained using 

the daily solar irradiation and the daily temperature as network inputs to forecast the 24 hours 

ahead of the solar irradiation.  

The use of the complex valued neural network to forecast the solar irradiation [48] permit the 

reduction of the inputs and have the time indexes integrated with data itself. According to the fact 

that time is very useful for the modeling of periodic components of the series, such as those 

exhibited by solar radiation [51].  

In this paper, we use quaternion neural network to forecast the daily solar irradiation using the 

meteorological data. First, we construct the complex valued (CV) daily meteorological data as we 

have done in our previous work [48]. Besides, we use two complex valued meteorological data to 

construct one quaternion valued meteorological parameter.    

Let us take a quaternion number: 

4321 kxjxixxq
def

                                                                                      (1) 

Where: Rxxxx 4321 ,,,  

          1222  ijkkji  and jkiikjkjijikijkkij  ,,,,,  

For instance, if we want to forecast the daily solar irradiation using the day number, the air 
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temperature and relative humidity, we use  mTrealx 1 ,  mTImagx 2 ,  mHrealx 3 , 

 mHImagx 4  to realize the quaternion number.  

Where: mT  is the complex valued air temperature and mH  is the complex valued relative 

humidity. 
 

3. Quaternion valued neural network 

The quaternion valued neural network is used to forecast one day ahead of the daily solar 

irradiation based on the values of different quaternion valued meteorological data of the actual 

day. Each input  contains two meteorological data converted before into complex domain. This 

architecture is represented in figure (1). The network has three layers: the first one represents the 

input layer that can receive the quaternion valued combined parameters (CV air temperature and 

CV relative humidity, or CV air temperature and CV sunshine duration, or CV sunshine duration 

and CV relative humidity), one hidden layer has m neurons and an output layer represents the 

daily solar irradiation. These layers are connected together with weights 
1
nmw and 

2
mw . The 

hidden and the output layers have bias 1
0mw and 

2
0w . All the network parameters, the inputs and 

the outputs are quaternion valued. It should be noted that the multiplication of two quaternions is 

not commutative (i.e. 122121 ,, qqqqHqq  ), but it is associative. 

 
Figure 1. Quaternion valued neural network to forecast one-day ahead solar irradiation. 

 

The QVNN output could be calculated using the following equation: 

         )Im(2)Im(2)Im(2Re2 ~~~~1ˆ kji
q yfkyfjyfiyfkG                                     (2) 

Where: the subsets Re, Im(i), Im(j) and Im(k) represent the real part, the imaginary parts 

according to i, j and k,  respectively. 2f is the sigmoid nonlinear function given by the following 

equations: 
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Where: l=1, …, m. 
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lh  is the l
th

 hidden neuron’s output given by equation (5). 

        )Im(2)Im(1)Im(1Re1 ~~~~ k
l

j
l

i
lll hfkhfjhfihfh                                                    (5) 

With lh
~

 is given by: 

  
1
0

1~
lnnll wuwh                                                                                                               (6) 

nu  is the quaternion valued vector of the meteorological data. 

The quaternion valued backpropagation algorithm [10], which is quaternion version of the real 

backpropagation algorithm, is used to train the network’s parameters.  

The objective is to find the network’s parameters that minimizes the sum-squared error at the 

output layer which can be written as 

  

d
d

d
dd

H EeeeeE
2

1

2

1

2

1
                                                                                  (7) 

2

dddd eeeE                                                                                                               (8) 

 The subset ‘*’ represents the conjugate operator and H is the Hermitian operator. d is the number 

of samples. 

)Im()Im()Im(Re
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kejeiee

kGkGe




                                                                                 (9) 

Where e is the error between the desired output qG  and the estimated output qĜ  and
e is the 

error’s conjugate. 

The quaternion valued gradient descent with momentum algorithm is used to find the optimal 

parameters of the QVNN and is given as follows: 

For the bias 2
0w : 

Let’s take: 
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For the weights 2
lw , where 
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The same procedure is used for the bias 1
0lw  and weights 1

nmw , where: 
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hence the adaptation method is given as follows: 
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With:   is the learning rate. 

Note that the conjugate of a quaternion number is given as follows: 

4321
* kxjxixxq
def

                                                                                              (22) 

  

3. Results 

The QVNN is used to forecast one-day ahead of the solar irradiation using obtained quaternion 

valued meteorological data. Firstly, we use just one input that contains a combination of two 

meteorological data. Besides, we applied two quaternion inputs (i.e. three meteorological data 

and one delayed complex value of the daily solar irradiation).  

The measured data, obtained from the national meteorological center of Algeria, corresponding to 

Tamanrasset city, Algeria (latitude: 22°48 N; longitude: 05°26 E) is used. The procedure 

described in [48] is used to obtain the complex valued form of the daily global solar irradiation 

qG , the daily air temperature mT , the relative humidity mH  and the sunshine duration mS . To 

make the data useful to the QVNN, it should be transformed into the quaternion-valued domain. 

The combination of two complex valued parameters can produce one quaternion parameter.  In 

all cases, we have used 11 months (year 2007) to train the QVNN and the last month (December 

2007) for validation. All the network has two neurons in the hidden layer. To evaluate the 

performance of the proposed technique, we use the normalized root mean squared error (nRMSE) 

and mean absolute error (MAE) like criteria. 

The obtained results are shown in Table (1). One can see that the air temperature and the 

sunshine duration give the best results and the introduction of the relative humidity decreases the 

quality. In addition, the air temperature influences the result’s quality, according to the fact that 

when we do not use this parameter as input the performance is decreased. 
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Figure (2) shows the measured and the forecasted output for the case of one QVNN with one 

input contains the air temperature and the sunshine duration.  The corresponding error is shown 

in figure (3). The correlation plot between the measured versus the forecasted daily solar 

irradiation is presented in figure (4).   

According to the obtained results, we can say the QVNN is preferable to forecast the daily solar 

irradiation. 

 
Figure 2. Measured and forecasted daily solar irradiation for Tamanrasset city. 

 
Figure 3. The corresponding error. 
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Figure 4. The correlation between the measured versus forecasted daily solar irradiation. 

 

Table 1. Results for Forecasting one-day ahead of the daily  

solar irradiation using different meteorological data    
 

Structure MAE (%) nRMSE (%) 

      kTkSfkG mmq ,1ˆ   0.40 4.01 

      kHkTfkG mmq ,1ˆ   0.95 9.54 

      kHkSfkG mmq ,1ˆ   1.12 11.80 

          kGkHkSkTfkG qmmmq ,,,1ˆ   0.62 6.62 

 
 

 

Conclusions  

 

 

In this work, the forecasting of the daily solar irradiation using the quaternion valued neural 

network is proposed. The meteorological data was converted to complex valued parameters, 

thereby; the realization of quaternion variable is achieved. The use of the QVNN to forecast the 

daily solar irradiation has an important advantage, which is the reduction of the input vector’s 

dimension comparing to the complex valued neural network (e.g. use the air temperature and the 

sunshine duration at the same time in one input, rather that two complex valued parameters in the 

complex valued neural networks). The obtained results show that using the air temperature with 

other meteorological parameters is very important. The relative humidity decreases the 

forecasting quality and the sunshine duration has a mandatory influence. As perspective work, we 

try to use other structures, such as the parallel forecasting (i.e. predicting several days ahead). 
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