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Abstract: In this paper is performed chaos control for the single-machine-infinite bus (SMIB) power 

system using control methods based on sliding mode control and passive adaptive control. The single-

machine-infinite bus (SMIB) power system creates chaotic oscillation when the amplitude of the 

power of the machine falls into a certain area. Designed the controllers for the complete chaos control 

of SMIB are obtained using sliding control theory, Lyapunov stability theory and passive adaptive 

control theory. Since the Lyapunov exponents are not required for these calculations, the sliding mode 

control method is very effective and convenient to achieve chaos control of similar systems. The 

designed passive controller which is introduced an adaptive law into to eliminate the influence of 

undeterministic parameter can be asymptotically stabilized at any desired fixed points. Numerical 

simulations are presented to demonstrate the effectiveness and validate the chaos control of the single-

machine-infinite bus (SMIB). 
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1. Introduction 

 

Power systems are complex and highly nonlinear structured dynamical systems. In addition, the 

complexity of the power systems has been increased with the large-scale interconnected power 

systems developing.  This case caused to increase the chaotic oscillations. The chaotic 

oscillations can be caused to the losing stabilization in some of the major power systems. Thus, 

the chaotic oscillations in power systems must be suppressed. In recent years, considerable efforts 

have been made to enhance the dynamic performance of power systems. To this end, for ensure 

the control of the power systems has been used different control methods.  However, the research 

of chaos control in power systems is few. The main aim of this paper is to propose a suitable and 

applicable method for controlling chaos in SMIB power system. 

 

Power systems basically have a nonlinear structure. For power systems investigation Single-

Machine infinite-bus system is basic model. In this study chaotic behavior of SMIB model is 

controlled two different methods. 

Sliding mode control (SMC) is known as a very effective way to control a system for its 

advantages, such as insensitivity to parameter variations, external disturbance rejection, and fast 

dynamic response. So, sliding mode control method is especially preferred due to its capability to 

suppress disturbances and dynamic model uncertainties by many researchers [1-7].  

It is known that the passive control has many advantages as clear physical interpretation, less 

control effort required or ease in implementation. Therefore, passive adaptive control (PAC) of 

nonlinear uncertain systems has attracted the attention of many researchers lately [8-17] 
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This paper contributes to the development of chaos control based on the SMC and the PAC 

for the single-machine-infinite bus (SMIB) power system. This paper is organized as follows. 

In the Section 2, the mathematical model of SMIB is described. The SMC to ensure chaos 

control of the SMIB system is designed in Section 3. Chaotic SMIB Power System is applied 

passive adaptive control in Section 4. Some numerical simulations are illustrated to confirm 

the validity of the proposed methods in Section 5. Finally, conclusions are given. 

 

2. Description of Single Machine Infinite Bus System(SMIB) 

 

In this section, we have been described SMIB and gyroscope systems which have been made 

synchronization. 
    
The single-machine-infinite bus (SMIB) power system is investigated detail in reference (18). 

The SMIB power system (called swing equation) is given by: 

 

  ̈    ̈                                                                   (1) 

 

where θ denotes the angle of generator, M is the moment of inertia, D is the damping constant,  

Pm is the power of the machine, and Pmax is the maximum power of generator. The Pm is also 

assumed to be as Pm =Asinωt, where A and ω are amplitude and frequency of the power of the 

machine, respectively.  

 

For simplicity, x1=θ, x2= ̇ notations are introduced. By using these notations, the equation of 

motion in convenient first order form can be written as follow: 

 
  ̇                                                                  
  ̇                    

}                                                (2) 

 

where c=D/M, β=Pmax/M, f=A/M 

 

In the realistic SMIB power system mode, parameters c     are deterministic and positive, the 

parameter f has uncertainty, which is influenced by work conditions.  

 

 

3. Sliding Mode Control (SMC) of Chaotic Single Machine Infinite Bus System (SMIB) 
 

Suggested SMIB chaotic system is described in equation (2). Thus the controlled chaotic system 

of Single Machine Infinite Bus System is attained as follows: 
 

where u1, u2, are control signals. 

e = x- xd                                      (3) 

 

where e =[e1 e2]
T
 is the tracking error vector. The error dynamics may be written as below: 

ė= ẋ- ẋd = Ax + Bg + Bu - ẋd                         (4) 
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where A is the system matrix, B is the control matrix, and g represents the system nonlinearities 

plus parametric uncertainties in the system. The control problem is to get the state x= [x1 x2]
T
 to 

track a specific time varying state xd= [xd1 xd2]T in the presence of nonlinearities. 

 

A =[
     
   

]; B=[
  
  

]   g= [
 
 
]  where,                 

 

Now, a time varying proportional plus integral (PI) sliding surface s (e, t) ∈ R
3
 is defined by the 

scalar equation s = s (e, t) as 

 

                    ∫  (    ) ( )  
 

 
     (5) 

 

where K∈R
3x3

, which must satisfy det(KB) ≠ 0, is a gain matrix, and L ∈ R
3x3

, which must have a 

stable A-BL, is a gain matrix, namely, the eigenvalues λi (i=1,2,3) of the matrix A-BL are 

negative (λi |< 0). It is well known that when the system operates in the sliding mode, the sliding 

surface and its derivative must satisfy s = ṡ = 0 [19-20]. The equations may be written as below: 

 

ṡ = KBg + KBLe + KBu + KAxd - Kẋd = 0    (6) 

 

Since KB is non-singular, the equivalent control in the sliding mode is given by 

 

ueq= -[ ĝ + Le ] - (KB)
-1

 [ KAxd - Kẋd ]    (7) 

 

where g is not exactly known, but guessed as ĝ, and the estimation error on g is presumed to be 

restricted by some known function G such that ǁ g - ĝ ǁ ≤ G. In addition, it reveals that the 

stability of systems in the sliding motion can be guaranteed just by selecting an appropriate 

matrix L using any pole assignment method. To ensure the achievement of the reaching condition 

indicated in equation (6), a control law is proposed as:  
 

u = ueq - (KB)
-1

[ε + ǁ KBG ǁ ]sign(s)      (8) 

where  ε > 0. 

 

 

4. Passive Adaptive Control (PAC) of Chaotic Single Machine Infinite Bus System (SMIB)  

 

In this section a passive adaptive control (PAC) is studied for chaotic SMIB system. 

 

The nonlinear system is described as follow [8-9]:  

 

{
  ̇   ( )   ( )  

   ( )                
                                                          (9) 
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where, x∈R
n
, u∈R

m
 and y∈R

m
 , state variable , external inputs and outputs vectors respectively, m 

columns of f and g are  smooth vector fields, h is smooth mapping. Moreover, vector field f has 

an equilibrium point at least. 

 

System (9) is said to be passive if there exists a real constant  , such that for ∀t ≥ 0, the following 

inequality holds: 

 

∫    ( )   
 

 
 , ∀t ≥ 0 

 

or if there exist a constant   equal to or greater than zero, i.e.    , and a real constant  , such 

that 

∫   ( ) ( )  
 

 

   ∫    ( ) ( )  
 

 

 

 

The second equation 2 which has been added the controller is expressed as follows: 

 
  ̇                                                                          
  ̇                      

}                                             (10) 

 

 Designed the controller u: 

 

                   ̂     

 ̂̇                                                   
} .                                      (11) 

 

Where k1 is an arbitrary real positive constant;  ̂, is the estimate value of undeterministic 

parameter   ;  ̂ is adaptation algorithm;  k2 is an arbitrary positive scalar, which can adjust the 

performance of adaptation algorithm. The chaotic oscillations in SMIB power system will be 

asymptotically stabilized at the equilibrium point. 

 

 

5. Numerical Simulations for Chaos Control of the Single Machine Infinite Bus System 

(SMIB) 

 

In this section, the Single Machine Infinite Bus System (SMIB) is controlled to a chaotic orbit by 

a sliding mode control (SMC) and passive adaptive control (PAC). Numerical simulations are 

applied to confirm the effective and the feasible of the proposed control methods.  

 

5.1 Applied sliding mode control method to the SMIB system  

 

The second equation (2) which has been added the controller is expressed with the numerical 

values as follows: 
  ̇                                                   
  ̇                       

}                                             (12) 
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Where c=0.5, β=1, f=4.45, ω=1 

 

A =[
     
      

];  B=[
  
  

]    g= [
 
 
] 

 

Where                  

 

Here, the gain matrix K is chosen as K = diag (1, 1) such that KB = diag (1, 1) is nonsingular. 

The desired eigenvalues of the matrix A-BL are taken as P = [-5 -5.001]. The gain matrix L is 

found as follows by using the pole placement method:  

 

L = [
  
      

]. 

 

As a result, the matrix K(A-BL) is computed as K(A-BL) = diag (-5, -5.001). The PI switching 

surfaces are obtained as follows:  

 

      ∫    ( )               
 

 

      ∫        ( )  
 

 
     

}                                                           (13) 

 

For this numerical simulation, the initial points of the system are employed as [x1(0), x2(0)] =     

[-0.2, 0.1]. The constant controller coefficient ε is selected as 0<ε<0.5. The reference states xd1, 

xd2, are selected as xd1 = xd2 = xd. Therefore, the control signals may be attained as: 

 

   [                  (  )]                            

   [            
  

 
                               

     (  )(  |    (  )         |)]

}                   (14) 

 

 5.2 Applied passive adaptive control (PAC) method to the SMIB system  

 

The equation (10) which has been added the controller is expressed with the numerical values as 

follows: 
  ̇                                                                          
  ̇                      

}                                                 (15) 

 

Where c=0.5, β=1, f=4.45, ω=1 

 

                   ̂     

 ̂̇                                                   
}                                              (16) 

Where,       ,    ,     ,     
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According to numerical simulations, time series of SMIB power system have been obtained as 

respectively shown in Figure 1; without controlled SMIB system, in Figure 2; controlled SMIB 

system with SMC, in Figure 3; controlled SMIB system with PAC, in Figure 4; applied the 

control signals to the SMIB system after 8s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Time series of without controlled SMIB system in x1-x2-t plane 
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Figure 2. Time series of controlled SMIB system in x1-x2-t plane with SMC after 8s 
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Figure 3. Time series of controlled SMIB system in x1-x2-t plane with PAC after 8s 
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6. Conclusions 

 

In this paper, an effective control technique has been suggested to stabilize chaos SMIB power 

chaotic system. A sliding mode control law is applied by using a PI switching surface.  So, it is 

found the stability of the error dynamics in the sliding mode that easily ensured by the PI 

switching surface. Designed SMC controller is rather satisfactory to a nonlinear controller to 

eliminate the undesirable chaotic oscillations. Several simulations results are presented. The 

simulation results indicate that the proposed control scheme works well. The control scheme was 

able to stabilize the chaotic SMIB power system around user-defined set-points. In addition, the 

control was able to induce chaos on the stable SMIB power system. In this paper, proposed S.M. 

Controller can be performed in similar systems. Furthermore, for the control of chaos in the 

SMIB power system have designed passive adaptive control (PAC) with unknown parameter. 

Simulation results indicate that the proposed passive adaptive control method is very effective 

and robust against the uncertainties in system parameter. Finally, numerical simulations are 

provided to show the effectiveness of proposed methods. The reaching results are satisfied in 

view of. 
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