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Abstract: In this paper has investigated the chaos control scheme of Permanent Magnet 

Synchronous Motor using Sliding Mode Control (SMC) method. In order to make control of chaos in 

permanent magnet synchronous motor system, its smooth air-gap model is examined. Sliding Mode 

Control method consists of two sections. To simplify the directive of the stability of the controlled 

permanent magnet synchronous motor in the sliding mode, firstly adopted a special type of PI 

switching surface. Secondly the SM Controller is obtained to guarantee the occurrence of the PI 

switching surface. The effectiveness of the theoretical analysis is evaluated by numerical simulations. 

Thus, Numerical results show that the proposed method is verify and trustworthy. 
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1. Introduction 

 

Permanent magnet synchronous motors (PMSM) are of great need for industrial applications due 

to their high speed, high efficiency, high power density and large torque to inertia ratio. The 

secure and stable operation of the PMSM, which is an essential requirement of industrial 

automation manufacturing, has received considerable attention because its dynamic model is 

nonlinear. If chaos should be not suppressed or eliminated by a controller, the performance of 

Permanent Magnet Synchronous Motor (PMSM) decreases due to chaos. Therefore, chaos should 

be suppressed or eliminated. 

 

Many researchers are endeavored for find new ways to suppress and control chaos more 

efficiently. So far many researchers have worked on different control methods to identify, 

suppress, synchronize and the control of the chaos phenomenon in PMSM [1–8]. For example 

see;  Robust Linear Control, Synchronization and Controlling Chaos, Linear Feedback Anti-

control, Nonlinear Feedback Control, Fuzzy Impulsive Control, Direct Adaptive Neural Control, 

Instantaneous Lyapunov Exponent Control, Controlling via Fuzzy Guaranteed Cost Controller. 

 

In PMSM system, the external inputs (vd, vq, TL) are set to zero, then the PMSM system becomes 

an  the unforced system.  In fact, this system is equivalent well known Lorenz system by 

everyone. Usually, researchers have used and controlled this unforced system of PMSM [9-13]. 

In these control methods, the different types of SMC methods are used by the researchers. For 

example see; Quasi-Sliding Mode Control [9], nonlinear back-stepping control and sliding mode 

control [10], a sliding mode variable structure controller for chaotic control [11], T-S Fuzzy 

Design and Sliding-Mode Control [12], Sliding mode control for PMSM drive system [13]. 
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Additionally, Bitao Zhang, Youguo Pi is applied sliding mode control to Permanent Magnet 

Synchronous Motor Servo Drive [14]. 

 

Furthermore, chaos and its control has been studied in different electrical machines; for example, 

induction motor drives [15-18], DC motors and drives [19-24], step motors [25-26], synchronous 

reluctance motor drives [27], switched reluctance motor drives [28-29]. 

 

Sliding mode control method is especially preferred due to its capability to suppress disturbances 

and dynamic model uncertainties by many researchers [30-35]. Sliding-mode control (SMC) is 

known as a very effective way to control a system for its advantages, such as insensitivity to 

parameter variations, external disturbance rejection, and fast dynamic response. Consequently, 

SMC has been widely used in position and velocity control of dc and ac motor drives. 

 

This paper contributes to the development of the SMC design for smooth air-gap PMSM. This 

paper is organized as follows. In the Section 2, the mathematical model of a smooth air-gap 

PMSM is given. SMC for chaos control of smooth air-gap PMSM is designed in Section 3. Some 

numerical simulations are illustrated to confirm the validity of the proposed method in Section 4. 

Finally, conclusions are given.  

 

 

2. Mathematical Model of the Smooth-Air-Gap Permanent Magnet Synchronous 

Motor (PMSM)  

 

In this section,   the mathematical model of PMSM which have a similar the system of equation 

with the BLDCM is presented. The control of the PMSM has been conducted using similarity of 

the two systems.  

 

A brushless DC motor is an electromechanical system. The equations of electrical and 

mechanical dynamics of a BLDCM can be described by Hemati [36] and Ge and Chang [23]. The 

system equations are transformed to a compact form through a single time-scale transformation. 

In this way, the equations in compact forms with a greatly reduced number of parameters are 

obtained as follow (1). For more details on modeling of PMSM and BLDCM may be found in 

ref. [1-8, 22- 23, and 37].  

 

The dimensionless mathematical model of BLDCM can be described by the following 

differential equations: 

 

 ̇                        

 ̇                              

 ̇   (     )            

}                                                (1) 

 

where, vq=0.168, ρ=60, vd =20.66,  δ=0.875 η=0.26 TL=0.53 σ =4.55 
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The dynamic model of a PMSM, which is based on the d-q axis, is described as follows (Li et al., 

[38]). 
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where       and   are state variables denoting currents and motor angular frequency, 

respectively;     and    are direct- and quadrature-axis stator voltage components, respectively;  

  is the polar moment of inertia;    is external load torque;   is the viscous damping coefficient; 

   is stator winding resistance;    and    are the direct- and quatrature- axis stator inductors, 

respectively;    is permanent-magnet flux;    is the number of pole-pairs. 

 

 

Fig. 1. σ = 4.55 for phase portraits for uncontrolled BLDCM system. a) x1 – x3,  b) x2 – x3   
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Fig. 2. σ = 4.55 for time series for uncontrolled BLDCM system. 
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The transformed model of PMSM can be described as a set of equations in the following in the 

dimensionless form: 
  ̃ 

  ̃
  ̃   ̃   ̃   ̃     ̃        
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For simplicity, the following notations are introduced, x1 =  ̃ , x2 =  ̃ , x3 =  ̃. By using these 

notations, the dimensionless mathematical model of PMSM can be described by the following 

differential equations (4). For the simplicity and the equations of PMSM to make different from 

BLDC motor equations, we here only studied the dynamic characteristics of the smooth-air-gap 

PMSM (in this model, Ld = Lq = L, so    ). Thus, in order to take control of chaos in 

permanent magnet synchronous motor system, smooth air-gap model of the permanent magnet 

synchronous motor is obtained as follows. 

 

So, the dimensionless mathematical model of smooth air-gap PMSM as (4) becomes: 

 
 ̇   ̃                     

 ̇    ̃                             

 ̇   (     )   ̃                     

}                                          (4) 

 

where  ̃  and  ̃  are the transformed direct- and quadrature-axis stator currents respectively:  ̃ is 

transformed angular speed of the motor;   ̃  and  ̃  are transformed direct- and quadrature axis 

stator voltage components, respectively;  ̃  is the transformed external load torque;   and   are 

system parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. σ = 4.55 for phase portraits for uncontrolled PMSM system. a) x1 – x3,  b) x2 – x3  
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3. Sliding Mode Control Design For Chaos Control of in Smooth Air-Gap a PMSM 

 

Suggested smooth air-gap a PMSM chaotic system is described in equation (5). Thus the 

controlled chaotic system of smooth air-gap a PMSM is attained as follows: 

 
 ̇                           

 ̇                                   

 ̇   (     )                          

                                      (5) 

 

where,  ̃ = 0.168,   ̃  = 20.66,  ̃ = 0.53, ρ= 60, σ = 4.55, η= 0 (in smooth air-gap: Ld = Lq = L ), 

u1, u2, u3 are control signals. 

 

e = x- xd                                      (6) 

 

where e =[e1 e2 e3]
T
 is the tracking error vector. The error dynamics may be written as below: 

 

ė= ẋ- ẋd = Ax + Bg + Bu - ẋd                         (7) 

 

where A is the system matrix, B is the control matrix, and g represents the system nonlinearities 

plus parametric uncertainties in the system. The control problem is to get the state x= [x1 x2 x3]
T
 

to track a specific time varying state xd= [xd1 xd2 xd3]T in the presence of nonlinearities. 

 

A = [
    
    
    

];   B=[
   
   
   

]   g= [

        
        

   

] 

 

Now, a time varying proportional plus integral (PI) sliding surface s (e, t) ∈ R3 is defined by the 

scalar equation s = s (e, t) as 

                    ∫  (    ) ( )  
 

 
     (8) 

 
Fig. 4. σ = 4.55 for time series for uncontrolled PMSM system. 
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where K∈R3x3, which must satisfy det(KB) ≠ 0, is a gain matrix, and L ∈ R3x3, which must 

have a stable A-BL, is a gain matrix, namely, the eigenvalues λi (i=1,2,3) of the matrix A-BL are 

negative (λi |< 0). It is well known that when the system operates in the sliding mode, the sliding 

surface and its derivative must satisfy s = ṡ = 0 [39, 40]. The equations may be written as below: 

 

ṡ = KBg + KBLe + KBu + KAxd - Kẋd = 0    (9) 

 

Since KB is non-singular, the equivalent control in the sliding mode is given by 

 

ueq= -[ ĝ + Le ] - (KB)
-1

 [ KAxd - Kẋd ]    (10) 

 

where g is not exactly known, but guessed as ĝ, and the estimation error on g is presumed to be 

restricted by some known function G such that ǁ g - ĝ ǁ ≤ G. In addition, it reveals that the 

stability of systems in the sliding motion can be guaranteed just by selecting an appropriate 

matrix L using any pole assignment method. To ensure the achievement of the reaching condition 

indicated in equation (9), a control law is proposed as:  

 

u = ueq - (KB)
-1

[ε + ǁ KBG ǁ ]sign(s)      (11) 

where  ε > 0. 

 

 

4. Numerical Simulations for Chaos Control of in smooth air-gap a PMSM  

 

In this section, the permanent magnet synchronous motor systems with smooth air-gap are 

controlled to a chaotic orbit by a SM controller. Numerical simulations are applied to confirm the 

effective and the feasible of the proposed control method.  

 

Equation (5) is rewritten with the numerical values as follows: 

 
 ̇                                         
 ̇                                                   

 ̇       (     )                                    
}                                   (12) 

 

where A, B and g matrices are gained  as follows: 

 

A =[
     
    

          
];  g =[

          
          

     

];  B =[
   
   
   

] 

 

Here, the gain matrix K is chosen as K = diag (1, 1, 1) such that KB = diag (1, 1, 1) is 

nonsingular. The desired eigenvalues of the matrix A-BL are taken as P = [-5 -5.001 -5.0001].  

 

The gain matrix L is found as follows by using the pole placement method:  
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L = [
    
        

          
]. 

 

As a result, the matrix K(A-BL) is computed as K(A-BL) = diag (-5, -5.001, -5.0001). The PI 

switching surfaces are obtained as follows:  

 

      ∫    ( )               
 

 

      ∫        ( )  
 

 
    

      ∫         ( )  
 

 
  
}
 
 

 
 

                                          (13) 

 

For this numerical simulation, the initial points of the system are employed as [x1(0), x2(0), x3(0)] 

= [3.63, 56.02, 0.29]. The constant controller coefficient ε is selected as ε<1. The reference states 

xd1, xd2, xd3 are selected as xd1 = xd2 = xd3 = xd. Therefore, the control signals may be attained 

as: 

 

                               (  )(  |          |)         

                                 (  )(  |            |)            

               –                (  )(  |    |)                                            

}   (14) 

 

The reference states are taken as xd = 0, and the state vectors x1, x2, and x3 converge to zero 

quickly after control signals are activated at the time t=0  as shown in Fig 5. Fig. 5(a) shows state 

vectors x1, x2, x3, Fig. 5(b) shows control signals u1, u2, u3. The reference states are taken as xd = 

1sin(2.4t), and the state vectors x1, x2, and x3 converge to xd quickly after control signals are 

activated at the time t=0 as shown in Fig 6. Fig. 6(a) shows state vectors x1, x2, x3, Fig. 6(b) 

shows control signals u1, u2, u3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. σ = 4.55 and xd = 0 for controlled PMSM system with SMC after t=0s,                      

(a) Time response (b) Applied control signals 
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In this section, based on the above analysis, the permanent magnet synchronous motor systems 

with smooth air-gap are controlled to a chaotic orbit by a SM controller. Numerical simulation 

shows that the control method is effective and feasible. 

 

 

5. Conclusions 

 

In this paper, an effective control technique has been suggested to stabilize chaos PMSM chaotic 

system. A sliding mode control law is applied by using a PI switching surface.  So, it is found the 

stability of the error dynamics in the sliding mode that easily ensured by the PI switching surface. 

Designed SMC controller is rather satisfactory to a nonlinear controller to eliminate the 

undesirable chaotic oscillations. Several simulations results are presented. The simulation results 

indicate that the proposed control scheme works well. The control scheme was able to stabilize 

the chaotic PMSM around user-defined set-points. In addition, the control was able to induce 

chaos on the stable PMSM. Related figures in Figs. 5(a) and 6(a) are shown control of states 

vectors for different references.  Figures 5(b) – 6(b) are shown control signals providing the 

control of states vectors. In this paper, proposed S.M. Controller can be performed in similar D.C 

Machines. Finally, numerical simulations are provided to show the effectiveness of proposed 

method. The reaching results are satisfied in view of. 
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