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Abstract

In this study we consider an inverse problem for quasilinear parabolic equation with type power
nonlinearity. Sufficient conditions on initial data and for blow up result is obtained with positive initial
energy. Over determination condition is given integral form. To get the blow up result for this nonlinear
inverse parabolic equation we use the concavity of positive function. The life span of solution is also
computed.
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1 Introduction

Inverseproblemsaretheproblemsthatconsist of finding an unknownproperty of an object, or a
medium, fromtheobservation of a response of thisobject, ormedium, to a probingsignal. Thus,
thetheory of inverseproblemsyields a theoreticalbasisforremotesensingandnon-
destructiveevaluation. Forexample, if an acousticplanewave is scatteredby an obstacle,
andoneobservesthescatteredfield far fromtheobstacle, or in someexteriorregion, thentheinverse
problem is tofindtheshapeandmaterialproperties of theobstacle. Suchproblemsareimportant in
identification of flyingobjects (airplanesmissiles, etc.), objectsimmersed in water (submarines,
paces of fish, etc.), and in manyothersituations.

Ingeophysicsonesends an acousticwavefromthesurface of theearthandcollectsthescatteredfield on
thesurfaceforvariouspositions of  thesource  of  thefieldfor a  fixedfrequency,
orforseveralfrequencies.  Theinverse  problem is tofindthesubsurfaceinhomogeneities.
Intechnologyonemeasurestheeigenfrequencies of a piece of a material, andtheinverse problem is
tofind a defect in thismaterial, forexample, a hole in a metal. Ingeophysicstheinhomogeneity can
be an oildeposit, a cave, a mine. Inmedicine it may be a tumor, orsomeabnormality in a human
body.

We now consider the following inverse problem for a quasilinear parabolic equation

up — V. [(ky + ky|Vu|™2)Vu)] + h(u, Vu) — [u|?~%u = F(t)w(x) 1)

u(x,t) =0, x €0Q,t >0 (2)
u(x,0) =uy x €N 3)
fQ ulx,)wx)dx =1, t >0 (4)
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whereQl € R",n > 1 is bounded domain with a sufficiently smooth boundary 9Q.p, k; and k,
positive constants and p > m > 2. Also assume that w(x) is given function satisfying

[, wP()dx =1, weH™Q) NHI(Q) NLP(Q), m>2 (5)

The inverse problem consists of finding a pair of functions {u(x, t), F(t)} satisfying (1)-(4) when
Jo uowdx =1, uy € Hy(Q) N LP(Q) (6)

andh(u, Vu) is continuous function which have the relation
v m
|hGu, Vu)| < K (Julz + [Vulz ), K > 0. )

Additional information about the solution to the inverse problem is given in the form of the
integral over determination condition (4). Temperature u(x,t) is averaging by function w over
domain Q[1].

Existence and uniquesness of solutions to an inverse problem for parabolic equations are studied
several authors [3,5,6,7,]. Asymptotic stability of solutions to inverse problem for parabolic
equations are investigated in some studies [1,5,8,9].

Global nonexistence and blow up results for nonlinear parabolic equations is discussed in some
papers [10,11]. But less is known about inverse problem for nonlinear parabolic equations. Eden
and Kalantarov [7] studied the following problem;

u; — Au — [u|Pu + b(x, t,u,Vu) = F(t)w(x), p > 0.
In this work, we consider blow up results in finite time for solutions to inverse problem for
nonlinear parabolic equation (1)-(4) with weight function w(x). The proof of our technique is
similar to the one in [11].

In this paper, we use the following notations;

lull = llull,@, lullp = llull., @ are usual the lebesque spaces, (u,v) = [, uvdx is the inner
product,

1
ab < ea® + —b?
4

is the weighted arithmetic-geometric inequality for a,b > 0 and

ab < fa? + C(p, f)b?
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. N . . 1 1 _ 1
is the Young's inequality with Pl 1,C(q,B) = PROTTLR

Let us note the following lemma known as “Ladyzhenskaya-Kalantarov lemma”. It is good tool
to obtain the blow up results for dynamical problems.

Lemma 1Suppose that a positive, twice differentiable function ¢ (t) satisfies for t > 0 the
following inequality

YY" — A+ W) = —2My’ — Mpy?

wherey > 0, My, M, > 0. If (0) > 0,9'(0) > —y,y 1(0), and M, + M, > 0 , then ¥ (t)tends to
infinity ast - t; <t,.

t, < 1 I y19(0)+yy’ (0)

< n -
2 ,M12+VM2 Y2y (0)+y’(0)

wherey, = =M, + /M2 + yM, , y, = —M; — \|M? + yM, .

Proof (see [4])
2 Blow-up Result

Theorem 1 Suppose that the conditions (3) and (4) are satisfied. Let {u(x,t), F(t)} be the
solution of inverse problem (1)-(4). Assume the following conditions are valid:

_ _ _ p+tm—4 _ K*(m+pky)(1+a)
y=4yJ1+pB—-1, Be(0,a), a = — A= o) (8)

A k k 1
E0) = =3 llugll? = 1VagI? = 22 [V 17 + 2 1o} > 0 9)

4(1 + 20)E(0) — Ay 12 > , (10)
where

_ [8K2(m+pky) 2 | 4Ky (8(m-1)\™"1 m 4 (8-D\P71 P 4k, 2
Dy = [P B w2 + 22 (RS flvwli + 2 (B5) Iwil + o 1wl 2|(L2)

Then there exists a finite time t; such that

|lul|> > +ooast - t.
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Proof: For 1> 0, we make the transformation u(x,t) = e**v(x,t)in (1) and we obtain the
equation

v — V. [(ky + ko e MDYy |m=2) Wy + Qv + e A h(eMv, eMVr) — e P2 |y|P2y
= e MF(t)o(x) (12)
with the boundary condition
v(x,t) =0, x €O t>0, (13)

the initial condition
v(x,0) =uy, x€Q, (14)

and the integral over determination condition
Jo v, )w(x)dx = e, t >0 (15)

Let us multiply the equation (12) by v,in L?(Q), we get the relation

d [ k k 1 kyA(m — 2)
Az LM 2 . %2 am-2)t m_* A(p-2)t p]_ 2 A(m=2)t m
_dt[z vl t= IVl te Vvl pe [lvll, — e Vvl

+lvell? + @e“p‘z)tllvllg + e M (h(eMv,e?Vv),v,) = —Ae " 2MF(t)  (16)

Now, multiply the equation (12) by win L?() and use over determination condition (15), then
we obtain

F(t) = kie™(Vv, Vw) + koe M=Vt (|Vy|™=2Vp, Yw) + (h(ev, et Vv), w)
—eMP=Dt(|y|P=2y, w) a7
Substituting equation (17) in equation (16) we get the relation

d Aky(m—2) .~ Ap—2) 5, »
= g (O = AT+ el T e D

= e M (h(eMv,eMV),v,) — e~ (h(eMv, eMVv), w) — Ak e M= (|Vy ™2V, Yw)
+2e =t (|y|P=2p, w) — ke~ (Vv, Vw) (18)

k A k
whereE (£) = 2 A=y} — 2 XDl - S vl - 27l
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Use the property of function h(e*tv, e**Vv) given by (7) and then apply the weighted arithmetic-
geometric inequality to the first term on the right side of (18) with a = e'1<1"2)f/2||v||§/2, b=
Kllogll, e =22 and @ = eX0nDe2907/2 | b = Kilugl, & = 2227 1o get the estimate

_ Alp-m) _ Ak, (p—m) _ K2(m+pky)
e |(h(e*v, eMVv),v,)| < Teﬂp 2t|v||D + z_mez(m D||vv||Im + m llvell® (19)

We can obtain similar result for the second term on the right side of (18)
witha = eA@=24/2|[p|B/2, b = 2K|wll, e =22 and @ = eAMDUZvu|2 b = AK]Iw]

Ak, (p—m
£ = 2(p—m)

! 8m

Alp —m Ak —-—m
Ae_z’lt|(h(ehv, eAth),W)l < %el(l)ﬂ)t”v”g + %el(m—ﬂtuvvnﬁ

2/1K2(m+pk2) —2)t 2
k) p2at | | (20)

Apply Young’s inequality to the third and fourth terms on the right side of (18) with a =
A(m—z)(m—1)t -2t Ay (p—m) Alp—2)(p—-1t 1
e m  CWIR™Y  b=2dkem VW, &= and a=e *» iy, b=
—2At
e ? |lwlly, €= M";—;m) to get the estimates respectively;

8m

~ _ Ay (p—m) _ My (8(m-1)\™"L _
Ak, A=t | (|Vy|M=2Vp, Yw)| < LT pAm 2>t||vv||m+72(p’f—m) e 2 M||vwll (1)

AD=3)t| ({1 |P—2 AP-m) A=)t P o A (B@=DYP™Y _aae P
Ae [(vlP vy, w)l < == ||v||p+p(—p_m) e *Mwll;, (22)

The last term on the right side of (18) can be estimated by weighted arithmetic-geometric

inequality witha = ||Vv|, b = Akye™¥||Vw||, & = w
At Aky (p+m—4) 2 Aky  _oat 2
Ak e™ | (Vv, Vw)| < ————IWv||* + o3 ® [IVw]| (23)

Substituting these inequalities (19)-(23) in equation (18) we get the following relation
d y! A2 2, ka1 2
ZE@ 2s@+m—2EQ) +5 @ +m—Dlvl?+ 2@ +m -Vl

_ K*(mtpky) 2 _ 24t
+{1- B2 vl ~ Doe (24)

where
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_ 22K%(m+pky) 2 &(S(m—l))m_l m i(g(p_l))p—l . Ak, ,
Do == WP+ T2 (S55) Wi +3(550) Il + 52 1w,

From (8) we rewrite the inequality (24) as follows

A2 Ak

d A
ZE® 2@ +m-j© +5 @ +m - Dl|? + 2@ +m = |2

4
+(52) llvelI? — Dye24(25)

1+a
Since p+m —4 > 0, the second and third terms on the right side of (25) can be omitted to get

the inequality

SE(@®) 25 (p +m— () + (12) Ivel? — Doe 2 (26)

1+a

Solving the differential inequality (26) with the estimation 1 — e >®*™* by 1 we get

A
E(t) 2 (E(0) — Dez® ™9 4 (2E) (|24 (27)
A
where D; = —22_ _ |t is easy to see that E(t) > ezP*™ Y(E(0) — D,) > j(0) — D, by assumption

A(p+m)
(11). Thus we obtain a lower bound for E(t)

E@®) = (575) JyIwelldr + E0) = Dy, (28)

1+a

Multiplying the equation (12) by v in L2(Q) and inserting (17) we get

1d
—— w12 + Al + ky[IVVII? + ke M2t V|| — eAP=2t|y||P = —e~2(h(e*v, e VD), v
2dt m p

+koe M= (|Vy|m=2Vy, Vw) + e 24 (h(e v, eMVv), w) — e P (|p|P~2y,w)
+k,e M (Vv, Vw) (29)

Remember the condition (7) and then apply the weighted arithmetic-geometric inequality to the

. AMp-2) _
first term on the right side of (29) with a=e E; “WlP’?, b=Klvl, ¢ =% and a=

A(m-2) _ ]
e 2 vl?, b=Klvl, &= %mm) to get the estimate

_ - _ k,(p— _ K?(m+pk
e M| (h(e*v, eMVv), v)| < BT AW Dt p|f 4+ EEID Am-2)t||yy1t 4 CEEED )2 (30)
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A(p-2)
We can find similar result for the thlrthterm on the right side of (29) witha =¢™ 2 ||v||”/2,
b=Kiwll, e =% and a =" TR b = Klwl], e = 227
—thl(h(e/ltv e“Vv) W)l p m o Alp- Z)t”v”P kz(p m) eAlm— Z)tllvv”m

2K? (m+pk2) —2).[' 2

oo € vl o 6y
Apply Young’s inequality to the second and fourth terms on the right side of equation (29) with

A(m— 2)(m 1) —_zlt Ky (p—m) A(P—Z)(P—l)t -1

a=e Yovllm=t, b =keem VW, € e and a=e » vl ", b=

—21
e? |lwlly, &= (” m) to get the estimates respectively;

_ _ ko(p—m) _ kp (8(m-1\M™"1 _
k,eAm 3)t|(|V17|m 2y, Vw)| SZTEA(m Z)t”VU”m‘FEZ((p_—m)) e~ 2 || vw || (32)
_ _ - _ 1 /8(p-\P~1 _
e ([P 2y, w)| < BT eA Dt | + 2 (TS) e 2w} (33)

The last term on the right side of equation (29) can be estimated by using weighted arithmetic-

geometric inequality witha = [[Vvll, b = ke 2[[vw]), e = A&

_At ki(p+m-4)
kie | (Vv,Vw)| < —

k —
190112 + 2 22w (34)

Substitute estimates (30)-(34) to obtain the following differential inequality

L2 |plj? 2 P A2ty — K2 a2t gy — (3 4 SOV 2

p am kez (p—m)
__kl(T'm) Vw2 - Dze—zlt (35)
where
_ 2K?%(m+pky) 2 8(m-1) m, 1 8(p-1) p-1 P Ky 5
27 kyp-m) lIwil® + ( p-m ) ”VW”m + p( p—m ) ”W”p + ) [[Vw]|=.

Rewrite the inequality (35) as follow

2> p+m A(p+m 4) Kz(m+pk2) 2 —2t
S ll? > PR E() + | oo ||v||? — Dye (36)

Since —D,e 24 > —p, and p + m — 4 > 0, we can write (36) as
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p+m K?(m+pky)
s vll? = B E@ - 2 v]|2 - D, (37)
Substituting the estimate (28) and p + m = 4(1 + 2a) in (37) we obtain

2Ll 2 21+ 2a) (Z£) [JllvellPde +2(1 + 20) (E0) — Dy) — D, - SO )2 (38)

2dt ka2 (p—m)
Since 1> ka(”—”’k” by assumption (8) then it follows from (38)
Lwl? > 401+ 20) (£E) [Fllvel2dr - 22v]|? + 4(1 + 20)E(0) - D (39)
where D; = 4(1 + 2a)D, + 2D, .
Now let us introduce the positive function
Y(©) = [JlIvi*dT + Co (40)

1373

whereC), is a positive constant will be chosen later. First and second derivatives of (40) as follows

P () = [[vII? = 2 [, (v, v + [[uoll?. (41)
17 _ d
P =—llvll® (42)
Apply the Cauchy-Schwarz inequality and the weighted arithmetic-geometric inequality to get an
upper bound for ¥’ (t);
t 1 2 t t 1
W@ = 4 [ [ weodr+; ||uo||2] <4 |[ wiedr || Iodiede+ 3 luol?
0 2 0 0 2
< 4|1 +4) (flIvlPdr) (S IvellPdr) + (1 + =) luoll*] (43)

Remembering the relations (40)-(43) we can estimate the term yy" — (1 +y)@')? ;
t
" = A+ =41 +p) (j IIvIIZdT> ¥+ [(p + m)j(0) — D3l — 2AllvI*
0

—4(1+ ) [ + 40) (JIvli2ar) (Jllveli2dr)] = (1 +7) (1+ ) lluol1*(44)
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We choose & > 0 such that max {1 +4e,1+ i} = % . By assumption (8) and inequality (44)
we get the estimation

YY" = A+ @) = =299" + ((p + ME(0) — D3)Co — (1 + ) ?[luoll*.

2
The lemma can be applied if ¢, = m,%% luoll® . (45)
U3

3 Conclusion

We get the relation yy"” — (1 +y)')? = —2Ayy’, with M; = A, M, =0,y, =0, y, = —21.
The conditions of lemma, positivity of ¥(0) > 0and ¥’'(0) > —y,y~(0), are satisfied by the
constant (45) and the assumption (11) respectively. Thus solutions to the inverse problem for

nonlinear parabolic equation (1)-(4) blow up as
¥ ((p+m)E(0)—D3)
Y((P+m)E(0)—D3)—2A(1+y)?[uol1?’

1
- < =
t tl_nln

As a result, we find conditions on data quaranteeing global nonexistence of solution to an inverse
source problem for a class of nonlinear parabolic equations.
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