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Abstract  
 
Within the framework of the piecewise homogeneous body model with the use of the Three-

Dimensional Geometrically Nonlinear Exact Equations of the Theory of Viscoelasticity the approach 

for the investigation of the internal stability loss (microbuckling) in the structure of the viscoelastic 

unidirected fibrous nanocomposites under compression along the fibers is developed in this work. This 

development concerns mainly the case where the viscoelastic matrix contains a periodical curved 

carbon nanotube (CNT) and It is assumed that the CNT have an initial infinitesimal imperfection. The 

form of this imperfection is taken as periodical curving of the CNT. The growing of the initial 

imperfection is investigated under fixed compressed external forces. Using the developed approach the 

numerical results related to the critical time are presented. In this case, the influence of the rheological 

parameters of the matrix material to the values of the critical time is also investigated. 
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1. Introduction 

 

It is known that one of the major mechanisms of the fracture of the unidirectional composites 

under uniaxial compression along the reinforcing elements is the stability loss in the material 

structure. According to this mechanism the theoretical investigations of the fracture of the 

unidirectional composites under uniaxial compression along the reinforcing elements are reduced 

to the investigations of the stability loss in the material structure, and the value of the external 

critical force is accepted as the value of failure force. At present, numerous theoretical 

investigations have been carried out in this field. The review of these investigations is given in 

[1-3]. Currently, in investigations of the stability and fracture of composite materials under 

compression along the reinforcing elements in the framework of a piecewise-homogeneous body 

model, essentially two approaches are used: application of certain hypotheses related to 

deformation of single components and to the character of interacting between them; and 

application of the Three-Dimensional Linearized Theory of Stability (TDLTS). It is evident that 

the results on the considered problems obtained within the framework of the TDLTS are more 

accurate than those obtained within the framework of the approximate theories. However, the 

investigations carried out in the framework of the TDLTS and listed in [1- 3] relate to the time-

independent materials. In the paper [4] in the framework of the TDLTS the approach for the 

investigation of the stability loss in the time-dependent layered composite material is proposed. 

In the paper [5], the approach [4] is developed for the unidirected fibrous composite material. 

However in [5] it is assumed that the filler concentration in the composite is very small and 
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interacting between the fibers is ignored. Consequently, the material is modeled as an infinite 

viscoelastic body containing a single fiber. In [6], the approach proposed in [5] is developed for 

the case where taken the interactions between the fibers into account, and the corresponding 

analysis were made on the infinite viscoelastic media containing two neighboring fibers. 

However in all investigations detailed in the monograph [7], it was assumed that the reinforcing 

elements of composite materials are made of traditional materials. In the paper [8] the attempt is 

made for development of the internal stability loss problems in the structure of the unidirectional 

fibrous composites for the case where the reinforcing element in the composite is the double-

walled carbon nanotube (DWCNT). In this study, the case is considered where a single periodical 

curved carbon nanotube (CNT) with an infinite length is contained by an infinite body with low 

concentration of fibers and the stability loss problem in that is investigated. Taking the low 

concentration of CNT into account the interaction between them is neglected. In this case we 

assume that the CNT has an initial insignificant periodical imperfection and investigate the grow 

of this imperfection with flow a time. The case where this imperfection starts to increase and 

becomes indefinitely is taken as a stability loss criterion and from this criterion the critical time is 

determined. The investigations are carried out within the framework of the piecewise 

homogeneous body model with the use of the three-dimensional geometrical nonlinear exact 

equations of the theory of viscoelasticity.  

 

 

2. Formulation of the Problem  

 

We consider an infinite body containing a single CNT with insignificant initial imperfection 

(Fig.1). The values related to the CNT denote by upper index (2), the values related to a matrix 

by upper index (1). With the middle line of the CNT we associate Lagrangian rectilinear 1 2 3Ox x x  

and cylindrical Or z  system of coordinates and the material of the CNT and matrix we take as 

homogeneous, isotropic and non-aging linear viscoelastic. Moreover we assume that this body is 

compressed at 
3x   by uniformly distributed normal forces with intensity p acting along the 

3Ox  axis and the cross section of the CNT normal to the middle line of the CNT is circle, with 

constant radius R+H and with constant thickness H along the entire length of the CNT. Thus 

within the CNT and matrix in the geometrical non-linear statement we write the governing field 

equations: 

 ( ) ( ) 0k in j k j

i n ng u   
  , ( ) ( ) ( ) ( ) ( )2 k k k k n k n

jm j m m j j mu u u u     , 

( ) ( ) ( ) ( ) ( )

( ) 0

0

( ) ( ) ( )

t

k k k k k n

in ie t t e d      
 

    
 


( ) ( ) ( ) ( )

0 ( ) ( )

0

2 ( ) ( )

t

k k k k

in int t d     
 

  
 

 ,  

( ) ( ) ( ) ( )

(11) (22) (33)

k k k ke      .                                          (1) 

It is assumed that on the inter-medium surface S the completely cohesion conditions are satisfied: 

   (1) (1) (2) (2)in j j in j j

n n j n n j
S S

g u n g u n    , 
(1) (2)j j

S S
u u ,                          (2) 
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In the considered case it is also assumed that the conditions 
(2)

( )ij   , 
(2)

( )iu   , (1)

zz r
p




, (1)

( ) 0ij r



  ( ( )ij zz ) are satisfied. Moreover, in the inner surface of CNT (denoted by 0S  

Figure 1. The geometry of the material structure and chosen coordinates  
 

and 
0
jn  are the component of the normal vector of 0S ) the following conditions can be written: 

 
0

(2) (2) 0 0in j j

n n j
S

g u n   ,                                        (3) 

In (1-3) the conventional tensor notation is used and subindexes in parentheses show the physical 

components of the corresponding tensors. Writing the expression of the Lamé's coefficients in the 

cylindrical coordinate system and doing some performing we can obtain the expression of the 

equations (1-3) in the cylindrical system of coordinates. The initial imperfection form of the CNT 

we give via the following equation of the middle line of that  

2 3 3( ) ( )x F x x  , 1 0x  ,                                                                 (4) 

where   is a small parameter. The geometrical significance of this parameter will be indicated 

with a specifically prescribed form of the function (4). Thus, the investigation of the development 

of the CNT initial imperfection (4) is reduced to the solution of the equation (1) in within the 

contact conditions (2-3).  

 

 

3. Method of Solution  

 

Using (4) and the condition on the cross section of the CNT, we derive the following equation of 

the inter-surface S in the cylindrical system of coordinates Or z .  

     
1

2 22 2 3

3 3 3 31 '( ) sin ( ) ( ) '( ) sinr t t t t       


     
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          
1 2

2 2 2 22 2 4 2 2

3 3 3 3( ) '( ) ( ) 1 '( ) sinR t t t t       
      

, 

2

3 3 3 3 3'( ) ( )sin ( ) '( )z t t r t t t       ,                                                                   (5) 

where 3t  is a parameter ( 3 ( , )t    ). After certain transformations, we obtain the expressions 

from (5) for the components rn , n , 3n of the unite normal vector to the surface S. Taking into 

account that the initial imperfection of the CNT has an infinite small size we seek quantities 

characterizing the stress-strain state of the matrix and CNT in the form of series in positive 

powers of the small parameter   

( ) ( ),

0

k q k q

rr rr

q

  




 ,…, 
( ) ( ),

0

k q k q

rr rr

q

  




 ,…, 
( ) ( ),

0

k q k q

r r

q

u u




 ,.             (6) 

We represent the expressions (5) and the expressions of rn , n , 3n  in the following series form. 

3

1

( , , )q

rq

q

r R a R t 




  ,  3 3

1

( , , )q

zq

q

z t a R t 




  , 

3

1

1 ( , , )q

r rq

q

n b R t 




  ,     3

1

( , , )q

q

q

n b R t  




 ,  3

1

( , , )q

z zq

q

n b R t 




 .                 (7) 

The expressions for the coefficients of the 
q  in (7) can be determined by employing routine 

operations; we omit details. Thus, substituting the expression (6) in (1) and grouping by identical 

powers we obtain the completely system equations for each approximation. In this case for the 

zeroth approximation the equation (1) hold and the equations derived for the first and subsequent 

approximation contain the values of the previous approximations. We assume that the materials 

of the both matrix and CNT is comparatively rigid and in this base the non-linear terms can be 

neglected in the equations obtained for the zeroth approximation and for the first and subsequent 

approximations the term ( ) ,0( )j k j

n ng u  can be replaced by j

n . By direct verification we prove 

that the equations obtained for the first approximation coincide with the equations of the Three-

Dimensional Linearized Theory of Stability (TDLTS) [9]. It should be noted that the 

homogeneous parts of the equations obtained for the second and for the subsequent 

approximations also coincide with the equations of the TDLTS. Consider the contact conditions 

for each approximation which are derived from the (2) and (3). For this purpose we substitute the 

expression (6), (7) in (2)-(3) and expand the components of each approximation of (6) in Taylor's 

series in the vicinity ( , , )R H z . Then, grouping by identical powers of the parameter   and 

taking into account the foregoing assumptions we derive the contact conditions for each 

approximation. We record them for the zeroth and first approximations.  

The zeroth approximation. 

     
2,0 2,0 2,0

0rr r rz     ,      
2,0 2,0 2,0

1,0 1,0 1,0
0rr r rz     ,     

2,0 2,0 2,0

1,0 1,0 1,0
0r zu u u          (8) 

The first approximation. 

       
2,0 2,0

2,1 2,0 2,0 2,0

1 1 0rr rr
rr r rr r z rzf

r z
 

 
       

    
            
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       
2,0 2,0

2,1 2,0 2,0 2,0

1 11,1 1,0 1,0 1,0
1,0 1,0

0rr rr
rr r rr r z rzf

r z
 

 
       

    
            

, 

 
2,0 2,0

2,1

1 11,1
1,0 1,0

0r r
r

u u
u f

r z


    
         

.                                                    (9) 

where  the following notation is used. 

   
2, (2), , ,

q q R z   ,      
2, (1), (2),

1,
, , , ,

q q q

q
R H z R H z       ,   q=0,1, 1 3( )sinf t  ,  

3
1

3

( )
sin

d t
R

dt


   , 

2

3 3

2

3

( ) ( )
sinr

t d t
R

R dt

 
 

 
  
 

, 3( )
cos

t

R



   ,  

3

3

( )
sinz

d t

dt


   .  (10) 

Moreover, in (9) we have given the contact relations for radial force  rr r r rz zn n n      and 

radial displacement ru . The rest of the contact relations for the first approximation are obtained 

from (9) by means of cyclic permutation of the indices ,r   and z  only in the components stress 

tensor (the first index is permuted) and displacement vector. Consider the determination of each 

approximation. 

The zeroth approximation. In the pure elastic case this approximation has the exact analytical 

solution [9]. Replacing the elastic constants in this solution with corresponding operators we 

obtain the solution to the quasistatic problem related to the zeroth approximation. We obtain the 

following relations from the mentioned solution under the assumption that 
(1) (2)   [9]. 

(1),0 (2),0

(1)zz zz

p

E
   , (1),0

zz p  , (1),0 (2),0

(1)z z

p
u u z

E
  , (1),0 (1) (1),0

r zzu    ,   

(2),0 (2) (2),0

r zzu    , (1),0 (2),0 0u u   , (1) (2) (1) (2) 0rr rr         , 

(2)
(2)

(1)zz

E
p

E
  .              (11) 

The first approximation. The equation (4) is selected as follows  

2 3 3 1

2
sin sin , 0x L x x x


    ;       3 3( ) sinx x   , L  ,  

L
          (12) 

Assume that the material of the CNT is pure elastic and the following operators describe the 

behavior of the matrix material  

(1) (1) *

0 0 ' 01 ( )E E R  
      ,  

(1)
(1) (1) *0

0 0 ' 0(1)

0

1 2
1 ( )

2
R


    




 
    

 
,         (13) 

where (1)

0E , (1)

0  are the momentary values of the Young modules and Poisson's ratio, 

respectively; ' , 0  and   are rheological parameters; *

'R
 is the fractional-exponential 

operator of Rabotnov [10].  

According to (11) the equations obtained for the first approximation have the following form 

 
( ),1( ),1 ( ),1

( ),1 ( ),11 1
kk k

k krrr rz
rr

r r z r




 
 



 
    

  

2 ( ),1
( ),0

2
0

k
k r

zz

u

z






, 

( ),1 ( ),1 ( ),1
( ),11 2

k k k
kr z

r
r r z r

  


  




  
   

  

2 ( ),1
( ),0

2
0

k
k

zz

u

z







, 
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( ),1( ),1 ( ),1
( ),11 1

kk k
kzrz zz

rz
r r z r

 




 
   

  

2 ( ),1
( ),0

2
0

k
k z

zz

u

z






,                                        (14) 

Due to pure elasticity of the CNT material the relations (1) for that are replaced by the following 

ones. 
(2),1 (2) (2),1 (2) (2),1

( ) ( )2n

in i ine      .                                                          (15) 

It follows from (11), (14) and (15) that t (time) is a parameter in the equations related to the CNT. 

However t is an independent variable in the equations related to the matrix. According to this 

situation we employ the Laplace transform  

0

( ) ( ) sts t e dt 


                    (16) 

with parameter 0s  , to all equations and relations (excepting the contact relations (9)) related 

to the matrix material. After this procedure the equations (14) and others are valid for the Laplace 

transforms of the south values, however the constitutive relations obtained for first approximation 

are transformed to the following ones.  

(1),1 (1) (1),1 (1) (1),1

( ) ( )2n

in i ine      ,  
(1) (1)

(1)

(1) (1)(1 )(1 2 )

E 


 


 
,   

(1)
(1)

(1)2(1 )

E






.               (17) 

For the solution of the system equations coupled from (14), (15), (17) for the CNT and the 

system equations coupled from the Laplace transforms of (14) and from the (17) we employ the 

following representations [9]. 
21

ru
r r z

 
   

  
, 

21
u

r r z




 
    

  
, 

2
1

3 1 2
( ) ( 2 )u

z
      

      
 

.        (18) 

The functions  and   are determined from the equations 
2

2

1 1 2
0

z


 
    

 
,  

2 2
2 2

1 2 1 32 2
0

z z
 

   
       

   
,                                    (19) 

where  

0

1
zz 





 ,  

0

2
zz 





 ,  

0

3

2

2

zz  


 

 



,   

2 2

1 2 2 2

1 1

r r r r 

  
   

  
.                (20) 

The equations (18)-(20) have been written without upper indexes. We use these relations for the 

matrix (CNT) and in this case we replace the values 
( )iu ,  ,   and 0

zz  by (1)

( )iu , 
(1) , (1) and 

(1),0

zz  ( (2)

( )iu , 
(2) , (2) and (2),0

zz ) respectively.  

Taking (9), (10), (11) and (12) into account the contact conditions for the first approximation can 

be represented as follows. 

 
2,1

0rr  ,   
2,1

0r  ,   
2,1 (2),0

32 cos sinrz zz t    ,  
2,1

1,1
0rr  ,   

2,1

1,1
0r  ,  

    
2,1 (1),0 (2),0

31,1
2 cos sinrz zz zz t       ,  

2,1

1,1
0ru  ,  

2,1

1,1
0u  ,  

2,1

1,1
0zu  .         (21) 

Duo to (21) we define the solution to the equations (21) as follows. 

 (1) (1) (1)

1 1 1( ) ( ) sin cosA s I s r z     ,   
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   (1) (1) (1) (1) (1)

2 1 2 3 1 3( ) ( ) ( ) ( ) cos sinA s I s r A s I s r z        
 

,                                  (22) 

   (2) (2) (2) (2) (2)

1 1 1 1 1 1( ) ( ) ( ) I ( ) sin cosA t K t r B t t r z        
 

, 

   

   

(2) (2) (2) (2)

2 1 2 3 1 3(2)

(2) (2) (2) (2)

2 1 2 3 1 3

( ) ( ) ( ) ( )
cos sin

( ) ( ) ( ) I ( )

A t K t r A t K t r
z

B t I t r B t t r

   
 

   

  
  
 
 

,                                (23) 

where 1( )I x  is a Bessel function of a purely imaginary argument and 1( )K x  is a  Macdonald 

function. Using (15), (17), (18), (22) and (23) we determine the values related to the CNT via the 

unknowns (2)

1 ( )A t , (2)

2 ( )A t  and (2)

3 ( )A t , and the Laplace transform of the values related to the 

matrix via the unknowns (1)

1 ( )A s , (1)

2 ( )A s  and (1)

3 ( )A s . Now we consider the determination of the 

inverse of Laplace transform. For this purpose we use Schapery method [11]. So, we determine 

the unknowns (2)

1 ( )A t , (2)

2 ( )A t  , (2)

3 ( )A t  and (1)

1 ( )A s , (1)

2 ( )A s , (1)

3 ( )A s  at 1 (2 )s t  for any 

selected t and from the criterion 
   

(2),1

0, ; 0, 2

max r
z

u
  

  we determine the critical time. In this criterion 

we use only the first approximation because the second and subsequent approximations do not 

change the values of the critical time.  

 

 

3. Numerical Results and Discussion   

 

We introduce the dimensionless rheological parameter  0    and the dimensionless time 

 1 (1 ')

0't t   and assume that (1) (2)

0 0.3   . It is well known that under investigation of 

stability loss problems for viscoelastic materials the external compressive force p must satisfy the 

following inequalities  

 (1)

. . 0cr crp E     (1)

0p E    (1)

.0 .0 0cr crp E  .             (24) 

The values of .cr   (for 't   ) and of .0cr  (for ' 0t  ) with various (2) (1)

0E E E  (500 and 

700), 1 2 ( ) ( )R H R H      , 2 ( )H R H    and   are given in Tables 1-4. Note that 

under calculation of .cr   and .0cr  the purely elastic problems are solved and in these case the 

operators
(1)E , 

(1)  are replaced with the constants  (1) (1)

't
E E 

 ,  (1) (1)

't
  

 , and 

 (1) (1)

0 ' 0t
E E


 ,  (1) (1)

0 ' 0t
 


  respectively. It follows from these results that there is non-

monotonic character between the parameters 1  and 
,0cr , 

,cr  , but the values of 
,0cr  and 

,cr   

decrease with 2 . However the values of 
,cr   increase with  . The values of 

,0cr  and 
,cr   

decrease with E. 

 

Table 1. The values of .cr   and of .0cr  for 500E  , 2 0.3  , 0.5   with various 1  

1  ,0cr
 ,cr 
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0.5   1.0   2.0   3.0   
0.1 -0.1597 -0.0591 -0.0850 -0.1102 -0.1227 

0.2 -0.0691 -0.0323 -0.0414 -0.0505 -0.0551 

0.3 -0.0589 -0.0384 -0.0434 -0.0484 -0.0510 

0.4 -0.0655 -0.0519 -0.0552 -0.0585 -0.0602 

0.5 -0.0775 -0.0676 -0.0699 -0.0724 -0.0736 

0.6 -0.0910 -0.0832 -0.0851 -0.0870 -0.0879 

0.7 -0.1041 -0.0979 -0.0994 -0.1009 -0.1017 

0.8 -0.1163 -0.1110 -0.1123 -0.1135 -0.1142 

0.9 -0.1270 -0.1225 -0.1236 -0.1247 -0.1252 

1.0 -0.1362 -0.1324 -0.1333 -0.1342 -0.1347 

Table 2. The values of .cr   and of .0cr  for 500E  , 1 0.3  , 0.5   with various  2  

2  ,0cr
 

,cr 
 

0.5   1.0   2.0   3.0   
0.010 -0.3845 -0.2304 -0.2915 -0.3337 -0.3490 

0.015 -0.3822 -0.1785 -0.2336 -0.2798 -0.2998 

0.020 -0.3703 -0.1478 -0.1949 -0.2371 -0.2566 

0.025 -0.3493 -0.1278 -0.1683 -0.2059 -0.2238 

0.030 -0.3254 -0.1138 -0.1492 -0.1827 -0.1989 

0.035 -0.3024 -0.1034 -0.1348 -0.1649 -0.1796 

0.040 -0.2814 -0.0954 -0.1236 -0.1509 -0.1642 

0.045 -0.2629 -0.0891 -0.1146 -0.1395 -0.1518 

0.050 -0.2466 -0.0839 -0.1073 -0.1302 -0.1415 

 

Table 3. The values of .cr   and of .0cr  for 700E  , 2 0.3  , 0.5   with various 1  

1  ,0cr
 

,cr 
 

0.5   1.0   2.0   3.0   
0.1 -0.1188 -0.0437 -0.0627 -0.0815 -0.0908 

0.2 -0.0538 -0.0271 -0.0336 -0.0402 -0.0436 

0.3 -0.0503 -0.0356 -0.0391 -0.0428 -0.0446 

0.4 -0.0599 -0.0501 -0.0524 -0.0548 -0.0560 

0.5 -0.0734 -0.0662 -0.0679 -0.0697 -0.0706 

0.6 -0.0878 -0.0822 -0.0835 -0.0849 -0.0856 

0.7 -0.1016 -0.0971 -0.0981 -0.0992 -0.0998 

0.8 -0.1141 -0.1104 -0.1112 -0.1122 -0.1126 

0.9 -0.1252 -0.1220 -0.1227 -0.1235 -0.1239 

1.0 -0.1347 -0.1319 -0.1326 -0.1332 -0.1336 

 

Table 4. The values of .cr   and of .0cr  for 700E  , 1 0.3  , 0.5   with various  2  

2  ,0cr
 

,cr 
 

0.5   1.0   2.0   3.0   
0.010 -0.3562 -0.1865 -0.2432 -0.2896 -0.3094 

0.015 -0.3009 -0.1430 -0.1885 -0.2297 -0.2489 

0.020 -0.2554 -0.1187 -0.1559 -0.1909 -0.2076 

0.025 -0.2217 -0.1033 -0.1346 -0.1645 -0.1791 

0.030 -0.1965 -0.0927 -0.1196 -0.1457 -0.1586 

0.035 -0.1771 -0.0849 -0.1085 -0.1316 -0.1430 
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0.040 -0.1618 -0.0789 -0.0999 -0.1207 -0.1310 

0.045 -0.1495 -0.0742 -0.0932 -0.1119 -0.1213 

0.050 -0.1393 -0.0704 -0.0876 -0.1048 -0.1134 

 

Thus we consider the influence of the rheological parameters to the values of the critical time and 

denote it by .'crt  In Tables 5-6 the values of .'crt  are given under 1 0.3  , 2 0.3  , 500E   

with various   and ' . It follows from these results that if .0cr  then .' 0crt  ; if .cr   

then .'crt  . Moreover these results show that the values of .'crt  increase monotonically with 

 . However the values of .'crt  decrease with ' . These results agree with the well-known 

mechanical considerations and using these results we can determine the long-time strength of the 

nanocomposites with CNT under theirs compression along the CNT. 

 

Table 5. The values of 
'

.crt  under 500E  , 1 0.3  , 2 0.3   with various  ,   and   

  
0.5   1.0   

0.3    0.5    0.7    0.3    0.5    0.7    
-0.0520 0.1011 0.0533 0.0120 0.1303 0.0761 0.0217 

-0.0530 0.0731 0.0339 0.0057 0.0891 0.0447 0.0090 

-0.0540 0.0510 0.0205 0.0025 0.0594 0.0254 0.0035 

-0.0550 0.0338 0.0115 0.0010 0.0378 0.0135 0.0013 

-0.0560 0.0205 0.0057 0.0003 0.0222 0.0064 0.0004 

-0.0570 0.0105 0.0023 0.0001 0.0110 0.0024 0.0001 

-0.0580 0.0035 0.0005 0.0001 0.0036 0.0005 0.0001 

 

Table 6. The values of 
'

.crt  under 500E  , 1 0.3  , 2 0.3   with various  ,   and   

  
2.0   3.0   

0.3    0.5    0.7   0.3    0.5    0.7   
-0.0520 0.2641 0.2046 0.1127 1.1343 1.5741 3.3812 

-0.0530 0.1480 0.0910 0.0292 0.3274 0.2764 0.1861 

-0.0540 0.0855 0.0422 0.0082 0.1396 0.0838 0.0255 

-0.0550 0.0489 0.0193 0.0022 0.0667 0.0298 0.0046 

-0.0560 0.0263 0.0081 0.0006 0.0319 0.0106 0.0009 

-0.0570 0.0122 0.0028 0.0001 0.0136 0.0033 0.0002 

-0.0580 0.0038 0.0006 0.0001 0.0039 0.0006 0.0001 

 

 

Conclusions 

 

In this study, within the framework of the piecewise homogeneous body model with the use of 

the Three-Dimensional Geometrically Nonlinear Exact Equations of the Theory of 

Viscoelasticity the approach for the investigation of the internal stability loss (microbuckling) in 

the structure of the viscoelastic unidirected fibrous nanocomposites under compression along the 

fibers is developed. This development concerns mainly the case where the viscoelastic matrix 

contains a periodical curved carbon nanotube (CNT) and It is assumed that the CNT have an 

initial infinitesimal imperfection. The form of this imperfection is taken as periodical curving of 

the CNT. For the stability of the rising of the initial imperfection with the time under fixed 
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external compressed forces the Three-Dimensional Geometrically Nonlinear Exact Equations of 

the Theory of Viscoelasticity is employed. Introducing the dimensionless small parameter 

characterizing the degree of the insignificant initial imperfection for the solution to the 

corresponding nonlinear boundary value problem, the perturbation of the boundary-shape method 

is employed. It is proven that the equations and relations related to the first and subsequent 

approximations are the corresponding equations and relations of the TDLTS. For each 

approximation the corresponding closed system of linearized equations and contact conditions are 

obtained and for the solution of these equations the Laplace transformation with respect to time 

and method of separation of variables are employed. For determination of inverse Laplace 

transform the Schapery method is used. It is proven that the values of the critical parameters can 

be determined in the framework of the zeroth and first approximations only.  

Using the developed approach the numerical results related to the critical time are also analyzed. 

It follows from these results that if .0cr  then .' 0crt  ; if .cr   then .'crt  . Moreover 

these results show that the values of .'crt  increase monotonically with  . However the values of 

.'crt  decrease with ' . There is non-monotonic character between the parameters 1  and 
,0cr , 

,cr  , but the values of 
,0cr  and 

,cr   decrease with 2 . However the values of 
,cr   increase 

with  . The values of 
,0cr  and 

,cr   decrease with E.. 
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