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Abstract 

 
In this paper we consider a fourth order nonlinear parabolic equation with power type nonlinearity which 

such types of problems occur in many mathematical models of applied science, such as chemical reactions, 

heat  transfer, population dynamics, electro-rheological fluids etc. We show that there are solutions under 

some conditions on initial data which blow up in finite time with positive initial energy. To show the 

nonexistence of solutions under initial functions we used to generalized concavity lemma.  
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1 Introduction 
 

Many physical and engineering problems can be modelled mathematically in the form of 

evolution equations (partial differential equations depending on time). We can not obtain a well-

defined solution for these equations without adding suitable additional conditions (initial and 

boundary conditions). Since the last century, many authors have studied the existence and 

uniqueness for the linear types of these problems. 

 

Nonlinear partial differential equations are more complicated and have more properties than 

linear equations, these properties are related to important features of the real world phenomena, 

on the other hand, these properties are connected with the difficulties of the mathematical 

treatment. 

 

In the last decades, partial differential equations became one of the most active areas of 

mathematics research because it helped mathematicians to find answers and explanations to many 

phenomena of the nonlinear world. 

 

It is known that singularities occur in the solution of linear problems when the problem has 

singular coefficients or singular data, the so called fixed singularities. One of the most important 

properties of nonlinear partial differential equations is the possibility of eventual occurrence of 

singularities starting from smooth data (coefficient and initial or boundary conditions), the so 

called well posedness in the small, meaning the existence and uniqueness and continuity of the 

classical solutions can be established for small time. 

Singularities of nonlinear problems may come from the effects of nonlinear terms, which occur in 

the partial differential equations or in the boundary conditions, usually they depend on the time 

and the location, the so called moving singularities. One of the most remarkable type of these 
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singularities is what we call the Blow-up phenomena. Basically, in a nonlinear problem, blow-up 

is a form of the spontaneous singularities appear when one or more of the depending variables go 

to infinity as time goes to a certain finite time. 

 

We consider the following fourth order quasilinear parabolic equation : 

 

𝑢𝑡 − ∆[(𝑘0 + 𝑘1|∆𝑢|𝑚−2)∆𝑢)] − 𝑔(𝑥, 𝑡, 𝑢, ∆𝑢) = |𝑢|𝑝−2𝑢                  (1) 

𝑢(𝑥, 𝑡) = ∆𝑢 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0                (2) 

𝑢(𝑥, 0) = 𝑢0, 𝑥 ∈ Ω                  (3) 

         

where Ω ⊆ ℝ𝑛, 𝑛 ≥ 1 is bounded domain with a sufficiently smooth boundary 𝜕Ω . Also the 

constants  𝑘0 𝑎𝑛𝑑 𝑘1 are positive numbers and 𝑝 > 𝑚 + 1 > 3. Also assume that 𝑢0(𝑥) is given 

function satisfying   

 

𝑢0 ∈ 𝐻0
2(Ω) ∩ 𝐿𝑝(Ω)                     (4) 

 

and 𝑔(𝑥, 𝑡, 𝑢, ∆𝑢) is continuous function which have the relation  

 

|𝑔(𝑥, 𝑡, 𝑢, ∆𝑢)| ≤ 𝑀 (|𝑢|
𝑝

2 + |∆𝑢|
𝑚

2 )                 (5) 

with some positive 𝑀 > 0.   
 

Existence of solutions to these type of equations are studied in [1]. Erdem, in [2], studied blow-

up solutions to quasilinear parabolic equations  

𝑢𝑡 − ∑
𝜕

𝜕𝑥𝑖

𝑛

𝑖=1

((𝑑 + |∇𝑢|𝑚−2),
𝜕𝑢

𝜕𝑥𝑖
) + 𝑔(𝑢, ∇𝑢) = 𝑓(𝑢) 

 

where d is positive constant and f and g are continuous functions which satisfy the following 

conditions;  

 

(𝑢, (𝑓(𝑢)) ≥ 2(1 + 𝛼)𝐺(𝑢), 𝛼 > 0,  𝐺(𝑢) = ∫ 𝑓(𝑠)𝑑𝑠
𝑢

0
  ,  |𝑔(𝑢, 𝑣)| ≤ 𝑐1(|𝑢| + |𝑣|) , 𝑐1 > 0 

 

 Zhou, in [4], considered the following quasilinear parabolic equation  

 
𝑎(𝑥, 𝑡)𝑢𝑡 − div(|∇𝑢|𝑚−2∇𝑢) = 𝑓(𝑢) 

 

where  𝑎(𝑥, 𝑡)𝑢 ≥ 0 is a generalized Lewis function. He obtain blow-up result in finite time if the 

initial data possesses suitable positive energy.  
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Shahrouzi, [5], investigated a fourth order nonlinear wave equation with dissipative boundary 

condition. He showed that there was solutions under some conditions on initial data which 

blowed-up in finite time with positive initial energy. 

 

In this work, we consider blow up results in finite time for solutions to quasilinear parabolic 

equation (1)-(3) with positive initial energy.  

 

Thoroughout this paper, we use the following notations;  

  ‖𝑢‖ = ‖𝑢‖𝐿2(Ω),  ‖𝑢‖p = ‖𝑢‖𝐿𝑝(Ω)  are usual the lebesque spaces,  (𝑢, 𝑣) = ∫ 𝑢𝑣𝑑𝑥
Ω

 is the inner 

product,  

𝑎𝑏 ≤ 𝜀𝑎2 +
1

4𝜀
𝑏2                (6) 

 

is the weighted arithmetic-geometric inequality for 𝑎, 𝑏 > 0  and 

 

𝑎𝑏 ≤ 𝛽𝑎𝑞 + 𝐶(𝑝, 𝛽)𝑏𝑞′                  (7) 

 

is the Young`s inequality with 
1

𝑞
+

1

𝑞′
= 1, 𝐶(𝑞, 𝛽) =

1

𝑞′(𝑞𝛽)𝑞′/𝑞 . 

 

Let us note the following lemma known as generalized concavity lemma or  “Ladyzhenskaya-

Kalantarov lemma”. It is good tool to obtain the blow up results for dynamical problems. 

 

Lemma 1 Suppose that a positive, twice differentiable function 𝜓(𝑡) satisfies for 𝑡 > 0 the 

following inequality  

 

𝜓𝜓′′ − (1 + 𝛾)(𝜓′)2 ≥ −2𝑀1𝜓𝜓′ − 𝑀2𝜓2   

 

where 𝛾 > 0 ,  𝑀1, 𝑀2 ≥ 0. If (0) > 0,  𝜓′(0) > −𝛾2𝛾−1𝜓(0), and 𝑀1 + 𝑀2 > 0 , then 𝜓(𝑡)  

tends to infinity  as 𝑡 → 𝑡1 ≤ 𝑡2 . 

 

  𝑡2 ≤
1

2√𝑀1
2+𝛾𝑀2

𝑙𝑛
𝛾1𝜓(0)+𝛾𝜓′(0)

𝛾2𝜓(0)+𝛾𝜓′(0)
  

 

where  𝛾1 = −𝑀1 + √𝑀1
2 + 𝛾𝑀2 , 𝛾2 = −𝑀1 − √𝑀1

2 + 𝛾𝑀2 .  

 

Proof (see [3]) 
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2 Main Result 

 

Theorem 1  Suppose that the condition (3) is satisfied. Let  𝑢(𝑥, 𝑡)  be the solution of the problem 

(1)-(3). Assume the following conditions are valid:  

 

𝛾 = √1 + 𝛽 − 1, 𝛽𝜖(0, 𝛼), 𝛼 =
𝑝+𝑚−4

8
 ,  

        (8) 

 𝑚𝑎𝑥 {
𝑀2(𝑚+𝑘1𝑝)

𝑘1(𝑝−𝑚)
,

𝑀2(𝑚+𝑝𝑘1)(1+𝛼)

𝑘1(𝑝−𝑚)(𝛼−𝛽)
 } < 𝜆 <

𝛾(𝑝+𝑚)𝑗(0)

2(1+𝛾)2‖𝑢0‖2      

where            

𝑗(0) = −
𝜆

2
‖𝑢0‖2 −

𝑘0

2
‖∆𝑢0‖2 −

𝑘1

𝑚
‖∆𝑢0‖𝑚

𝑚 +
1

𝑝
‖𝑢0‖𝑝

𝑝
> 0                          (9) 

       

Then there exists a finite time 𝑡1 such that  

 
‖𝑢‖2 → +∞  as  𝑡 → 𝑡1

−. 

  

Proof: For  𝜆 > 0 , we make the transformation  𝑢(𝑥, 𝑡) = 𝑒𝜆𝑡𝑣(𝑥, 𝑡) in (1) and we obtain the 

equation  

 

𝑣𝑡 + 𝜆𝑣 + ∆[(𝑘0 + 𝑘1𝑒𝜆(𝑚−2)𝑡|∆𝑣|𝑚−2)∆𝑣] − 𝑒−𝜆𝑡𝑔(𝑒𝜆𝑡𝑣, 𝑒𝜆𝑡∆𝑣) = 𝑒𝜆(𝑝−2)𝑡|𝑣|𝑝−2𝑣           (10) 

 

with the boundary condition and the initial condition  

 

𝑣(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0 ,  𝑣(𝑥, 0) = 𝑢0, 𝑥 ∈ Ω ,                             (11) 

respectively. 

  

Let us multiply the equation (10) by 𝑣𝑡  in  𝐿2(Ω), we get the relation 

 

‖𝑣𝑡‖2 +
𝑑

𝑑𝑡
[
𝜆

2
‖𝑣‖2 +

𝑘0

2
‖∆𝑣‖2 +

𝑘1

𝑚
𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚

𝑚 −
1

𝑝
𝑒𝜆(𝑝−2)𝑡‖𝑣‖𝑝

𝑝
]  

            

−
𝜆𝑘1(𝑚−2)

𝑚
𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚

𝑚 +
𝜆(𝑝−2)

𝑝
𝑒𝜆(𝑝−2)𝑡‖𝑣‖𝑝

𝑝
= 𝑒−𝜆𝑡(𝑔(𝑒𝜆𝑡𝑣, 𝑒𝜆𝑡∆𝑣), 𝑣𝑡)  .                            (12) 

 

Using the inequalities (6) and (7) to the term on the right side of (12) with condition (5), we have 

 

𝑒−𝜆𝑡|(𝑔(𝑥. 𝑡. 𝑒𝜆𝑡𝑣, 𝑒𝜆𝑡∆𝑣), 𝑣𝑡)| ≤ 𝜖0𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚
𝑚 + 𝜖1𝑒𝜆(𝑝−2)𝑡‖𝑣‖𝑝

𝑝
+

𝑀2

4
(

1

𝜖0
+

1

𝜖1
) ‖𝑣𝑡‖2           (13)    

      

Substituting equation (14) in equation (13)  we get the relation   

 



 

H. KOCAMAN et al./ ISITES2015 Valencia -Spain  2512 

 

 

 

‖𝑣𝑡‖2 −
𝑑

𝑑𝑡
𝑗(𝑡) −

𝜆𝑘1(𝑚 − 2)

𝑚
𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚

𝑚 +
𝜆(𝑝 − 2)

𝑝
𝑒𝜆(𝑝−2)𝑡‖𝑣‖𝑝

𝑝
 

 

        ≤ 𝜖0𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚
𝑚 + 𝜖1𝑒𝜆(𝑝−2)𝑡‖𝑣‖𝑝

𝑝
+

𝑀2

4
(

1

𝜖0
+

1

𝜖1
) ‖𝑣𝑡‖2                     (14) 

 

where    𝑗(𝑡) =
1

𝑝
𝑒𝜆(𝑝−2)𝑡‖𝑣‖𝑝

𝑝
−

𝜆

2
‖𝑣‖2 −

𝑘0

2
‖∆𝑣‖2 −

𝑘1

𝑚
𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚

𝑚. 

 

We rewrite the inequality (14) as  

 
𝑑

𝑑𝑡
𝑗(𝑡) ≥ [𝜆(𝑝 − 2) − 𝜖1𝑝]𝑗(𝑡) +

𝜆

2
[𝜆(𝑝 − 2) − 𝜖1𝑝]‖𝑣‖2 +

𝑘0

2
[𝜆(𝑝 − 2) − 𝜖1𝑝]‖∆𝑣‖2 

 

 + (
𝑘1

𝑚
[𝜆(𝑝 − 𝑚) − 𝜖1𝑝] −

𝜆𝑘1(𝑚−2)

𝑚
− 𝜖0) 𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚

𝑚 + {1 −
𝑀2

4
(

1

𝜖0
+

1

𝜖1
)} ‖𝑣𝑡‖2                    (15) 

 

We choose  𝜖0 =
𝑎𝜆

𝑚
  and  𝜖1 =

𝜆(𝑝−𝑚−1)

𝑝
  in the inequality (15) to get the estimate  

                                          

   
𝑑

𝑑𝑡
𝑗(𝑡) ≥ 𝜆(𝑚 − 1)𝑗(𝑡) +

𝜆2

2
(𝑚 − 1)‖𝑣‖2 +

𝜆𝑘0

2
(𝑚 − 1)‖∆𝑣‖2            

 

+ {1 −
𝑀2(𝑚(𝑝−𝑚−1)+𝑝𝑘1)

4𝜆𝑘1(𝑝−𝑚−1)
} ‖𝑣𝑡‖2                        (16) 

 

Since  𝑚 − 1 > 0, the second and third terms on the right side of (16) can be omitted to get the 

inequality 

 
𝑑

𝑑𝑡
𝑗(𝑡) ≥ 𝜆(𝑚 − 1)𝑗(𝑡) + {1 −

𝑀2(𝑚(𝑝−𝑚−1)+𝑝𝑘1)

4𝜆𝑘1(𝑝−𝑚−1)
} ‖𝑣𝑡‖2  .                           (17) 

 

From the assumption (8) we obtain the relation 

 
𝑑

𝑑𝑡
𝑗(𝑡) ≥ 𝜆(𝑚 − 1)𝑗(𝑡) + (

1+𝛽

1+𝛼
) ‖𝑣𝑡‖2  .                           (18) 

       

Solving the differential inequality (18) we have  

 

𝑗(𝑡) ≥ 𝑗(0)𝑒𝜆(𝑚−1)𝑡 + (
1+𝛽

1+𝛼
) ∫ ‖𝑣𝑠‖2𝑑𝑠

𝑡

0
 .                       

 

 It is easy to see that 𝑗(𝑡) ≥ 𝑒
𝜆

2
(𝑚−1)𝑡𝑗(0) ≥ 𝑗(0) by assumption  (9). Thus we obtain a lower bound 

for 𝑗(𝑡)  

 



 

H. KOCAMAN et al./ ISITES2015 Valencia -Spain  2513 

 

 

 

 𝑗(𝑡) ≥ (
1+𝛽

1+𝛼
) ∫ ‖𝑣𝜏‖2𝑑𝜏

𝑡

0
+ 𝑗(0)              (19) 

 

Multiplying the equation (10) by 𝑣  in 𝐿2(Ω)  we get  the relation 

 
1

2

𝑑

𝑑𝑡
‖𝑣‖2 + 𝜆‖𝑣‖2 + 𝑘0‖∆𝑣‖2 + 𝑘1𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚

𝑚 − 𝑒𝜆(𝑝−2)𝑡‖𝑣‖𝑝
𝑝
       

 

= 𝑒−𝜆𝑡(𝑔(𝑥, 𝑡, 𝑒𝜆𝑡𝑣, 𝑒𝜆𝑡∆𝑣), 𝑣)                  (20)                  

 

Using the inequalities (6) and (7) to the term on the right side of (20) under condition (5), we 

have 

 
1

2

𝑑

𝑑𝑡
‖𝑣‖2 ≥ −𝑘0‖∆𝑣‖2 + (1−𝜖3)𝑒𝜆(𝑝−2)𝑡‖𝑣‖𝑝

𝑝
− (𝑘1 + 𝜖2)𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚

𝑚     

 

       − [𝜆 +
𝑀2

4
(

1

𝜖2
+

1

𝜖3
)] ‖𝑣‖2               (21) 

 

Rewrite the inequality (21) as follows 

 
1

2

𝑑

𝑑𝑡
‖𝑣‖2 ≥

(𝑝+𝑚)

2
𝑗(𝑡) + [

𝜆(𝑝+𝑚−4)

4
−

𝑀2

4
(

1

𝜖2
+

1

𝜖3
)] ‖𝑣‖2 +

𝑘0(𝑝+𝑚−4)

4
‖∆𝑣‖2  

 

+ (
𝑘2(𝑝−𝑚)

2𝑚
− 𝜖2) 𝑒𝜆(𝑚−2)𝑡‖∆𝑣‖𝑚

𝑚 + (
𝑝−𝑚

2𝑝
− 𝜖3) 𝑒𝜆(𝑝−2)𝑡‖𝑣‖𝑝

𝑝
          (22) 

 

Choose 𝜖2 =
𝑘2(𝑝−𝑚)

2𝑚
  and  𝜖3 =

𝑝−𝑚

2𝑝
  and omit third term on the right side of the inequality (22) 

since (𝑝 + 𝑚 − 4) > 0 , then  inequality (22) follows  

 
1

2

𝑑

𝑑𝑡
‖𝑣‖2 ≥

𝑝+𝑚

2
𝑗(𝑡) −

𝑀2(𝑚+𝑘1𝑝)

𝑘1(𝑝−𝑚)
‖𝑣‖2             (23) 

 

Substituting the estimate (19) and  𝑝 + 𝑚 = 4(1 + 2𝛼)  in (23) we obtain  

 
1

2

𝑑

𝑑𝑡
‖𝑣‖2 ≥ 2(1 + 2𝛼) (

1+𝛽

1+𝛼
) ∫ ‖𝑣𝜏‖2𝑑𝜏

𝑡

0
+ 2(1 + 2𝛼)𝑗(0) −

𝑀2(𝑚+𝑘1𝑝)

𝑘1(𝑝−𝑚)
‖𝑣‖2                      (24) 

 

By assumption (8) then it follows from (24)   

 
𝑑

𝑑𝑡
‖𝑣‖2 ≥ 4(1 + 2𝛼) (

1+𝛽

1+𝛼
) ∫ ‖𝑣𝜏‖2𝑑𝜏

𝑡

0
− 2𝜆‖𝑣‖2 + 4(1 + 2𝛼)𝑗(0)                        (25) 

 

Now let us introduce the positive function 
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𝜓(𝑡) = ∫ ‖𝑣‖2𝑑𝜏
𝑡

0
+ 𝐶0                (26) 

 

where 𝐶0 is a positive constant will be chosen later. First and second derivatives of (26) as 

follows 

 

𝜓′(𝑡) = ‖𝑣‖2 = 2 ∫ (𝑣, 𝑣𝜏)𝑑𝜏
𝑡

0
+ ‖𝑢0‖2  , 𝜓′′(𝑡) =

𝑑

𝑑𝑡
‖𝑣‖2                      (27) 

 

Apply the Cauchy-Schwarz inequality and the weighted arithmetic-geometric inequality to get an 

upper bound for 𝜓′(𝑡); 

 

[𝜓′(𝑡)]2 = 4 [∫ (𝑣, 𝑣𝜏)𝑑𝜏
𝑡

0
+

1

2
‖𝑢0‖2]

2
  

               ≤ 4 [(1 + 4𝜖) (∫ ‖𝑣‖2𝑑𝜏
𝑡

0
) (∫ ‖𝑣𝜏‖2𝑑𝜏

𝑡

0
) +

1

4
(1 +

1

4𝜖
) ‖𝑢0‖4]                               (28) 

 

Remembering the relations (26)-(28) we can estimate the term  𝜓𝜓′′ − (1 + 𝛾)(𝜓′)2  ; 

 

𝜓𝜓′′ − (1 + 𝛾)(𝜓′)2 ≥ 4(1 + 𝛽) (∫ ‖𝑣‖2𝑑𝜏
𝑡

0
) 𝜓 + (𝑝 + 𝑚)𝑗(0)𝜓 − 2𝜆‖𝑣‖2𝜓  

 

                  −4(1 + 𝛾) [(1 + 4𝜖) (∫ ‖𝑣‖2𝑑𝜏
𝑡

0
) (∫ ‖𝑣𝜏‖2𝑑𝜏

𝑡

0
) +

1

4
(1 +

1

4𝜖
) ‖𝑢0‖4]                  (29) 

 

We choose 𝜖 > 0 such that  𝑚𝑎𝑥 {1 + 4𝜖, 1 +
1

4𝜖
 } =

1+𝛽

1+𝛾
 . By assumption (8) and 𝜓 ≥ 𝐶0   we get 

the estimation 

 

𝜓𝜓′′ − (1 + 𝛾)(𝜓′)2 ≥ −2𝜆𝜓𝜓′ + 𝐶0(𝑝 + 𝑚)𝑗(0) − (1 + 𝛾)2‖𝑢0‖4 .                    (30) 
 

 

 

3 Conclusion  

 

As a result the lemma can be applied if    

 

𝐶0 =
(1+𝛾)2

(𝑝+𝑚)𝑗(0)
‖𝑢0‖4 .                            (31) 

 

So we have   𝜓𝜓′′ − (1 + 𝛾)(𝜓′)2 ≥ −2𝜆𝜓𝜓′, with  𝑀1 = 𝜆, 𝑀2 = 0, 𝛾1 = 0, 𝛾2 = −2𝜆 . The 

conditions of lemma  𝜓(0) > 0 and 𝜓′(0) > −𝛾2𝛾−1𝜓(0) are satisfied by the positive constant 

(31) and assumption (8) respectively. Thus solutions to the problem for nonlinear equation (1)-(3) 

blow up as  

 

 𝑡 → 𝑡1 ≤
1

2𝜆
𝑙𝑛

𝛾(𝑝+𝑚)𝑗(0)

𝛾(𝑝+𝑚)𝑗(0)−2𝜆(1+𝛾)2‖𝑢0‖2 . 
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For example, take 𝑢0 = 𝑠𝑖𝑛𝜋𝑥, Ω = (0,1), 𝑝 = 5, 𝑚 = 3, 𝑘0 =
1

1000
, 𝑘1 =

1

10000
 , 𝜆 =

1

1000
, 𝛽 =

1

4
, 𝑀 =

1

10000
,   with positive initial energy 𝑗(0) = 0,016  then we calculate the blow up time 

t=43,5 . 
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