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Abstract 

 
This paper aims to present an alternative analytical method for damped response of cross-ply 

laminated doubly-curved shells. In the proposed method, the governing equations of first order 

shear deformation laminated shell are obtained by Navier solution procedure. Materials of the 

shell laminates are assumed to be linear elastic or viscoelastic. Time-dependent equations are 

transformed to the Laplace domain and then Laplace parameter dependent equations are solved 

numerically. The results obtained in the Laplace domain are transformed to the time domain with 

the help of modified Durbin’s numerical inverse Laplace transform method. Verification of the 

presented method is carried out by comparing the results with those obtained by Newmark method 

and ANSYS finite element software. The numerical results have proved that the presented 

procedure is a highly accurate and efficient solution method and it can be easily applied to the 

laminated composite shell problems 

 

Key Words: Viscoelastic materials; Damped vibration; Inverse Laplace transform; Doubly-

curved laminated shells 

 

 

1. Introduction 

 

Laminated composite shells are being increasingly used in all fields of engineering because of 

their many advantageous properties. The most advantageous part of shell structures is their 

load-carrying ability due to combination of laminates and their curvature. Therefore, many 

papers have been published on this subject. Transient vibration analysis of shells made of 

layers has a primary importance in engineering design. It is necessary to have a full 

understanding of the behavior of laminated composite shells. 

Many researchers have investigated the dynamic analysis of shell structures with linear elastic 

materials. Toh et al. [1] examined the transient stress response of an orthotropic laminated 

open cylindrical shell. They presented the solution analytically which includes both contact 

deformation and transverse shear. Gong et al. [2] presented a set of analytic solutions to 

predict the dynamic response of simply supported laminated shells. Wu et al. [3] formulated 

an asymptotic theory for dynamic analysis of doubly curved laminated shells within the 

framework of three-dimensional elasticity. Chun and Lam [4] investigated the free and forced 

vibration of laminated curved panels subjected to the triangular, explosive and step loadings. 

The normal mode superposition method is used in the forced vibration analysis. Prusty and 

Satsangi [5] described the transient response of composite stiffened plates and shells. The 

governing undamped equation of motion is obtained with finite element method and 

Newmark's method is used for the direct time integration. Swaddiwudhipong and Lui [6] used 

modified nine-node degenerated shell elements to investigate the elastic and elasto-plastic 

dynamic response of laminated composite plate and shell structures. In their study, 

Newmark's algorithm is used for the direct time integration. Krishnamurthy et al. [7] used the 

finite element methods and the classical Fourier series to obtain impact response of a 

laminated composite cylindrical shell. Equations are solved by means of Newmark’s 

algorithm combined with a predictor–corrector scheme. Her and Liang [8] studied the 

composite laminate and shell structures subjected to low velocity impact by the 
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ANSYS/LSDYNA finite element software. Park et al. [9] presented static and dynamic 

analysis of laminated plates and shells. The transverse shear stiffness was defined by an 

equilibrium approach. To determine the element stiffness matrix, the Quasi-Conforming 

Technique was used. Newmark-b method was used for time integration. Jung and Han [10] 

investigated the vibration analysis of functionally graded material and laminated composite 

structures, using a refined 8-node shell element that allows for the effects of transverse shear 

deformation and rotary inertia. For the study, the Newmark-b time integration method was 

adopted. 

In this paper, the damped dynamic analysis of doubly curved laminated shells is examined 

theoretically with the Laplace transform. Governing equations of dynamic system are 

transformed efficiently to a static case with applying Laplace method [11-15]. For verification 

the numerical results obtained with presented procedure are compared with those obtained 

Newmark method and ANSYS finite element software. The results obtained with the 

suggested method are found to be in excellent agreement with those in the literature.  

 

2. Theoretical formulation 

 

Suppose that the shell is composed of N orthotropic layers of uniform thickness. Co-ordinate 

system of a doubly curved laminated shell is shown in Fig. 1. Here, an orthogonal curvilinear 

coordinate system is composed from 𝜉1, 𝜉2, 𝜁 coordinates. 𝜉1 and 𝜉2 curves are lines of 

curvature on the mid-surface of the shell. 

Figure 1. Coordinate and Geometry of a laminated doubly-curved shell 

 

2.1. Kinematics of the shell 

 

The displacements along the local coordinate axes 𝜉1, 𝜉2, and 𝜁 at any point in the FSDT thick 

shell are assumed as [16] 

{

𝑢1(𝜉1, 𝜉2, 𝜁, 𝑡)

𝑢2(𝜉1, 𝜉2, 𝜁, 𝑡)

𝑢3(𝜉1, 𝜉2, 𝜁, 𝑡)
} = {

𝑢0(𝜉1, 𝜉2, 𝑡)

𝑣0(𝜉1, 𝜉2, 𝑡)

𝑤0(𝜉1, 𝜉2, 𝑡)
} + 𝜁 {

∅1(𝜉1, 𝜉2, 𝑡)

 ∅2(𝜉1, 𝜉2, 𝑡)
0

}                                                              (1) 

 (x3) 

2 (x2) 

1 (x1) 

R1 
R2 

b 

a 

h 
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where (u1, u2, u3) are the displacements of any point in the laminated shell, (u0, v0, w0) are the 

displacements of any point on the mid-surface of the shell. (1, 2) are the rotations of the 

reference surface, 𝜁 = 0, about the 𝜉2- and 𝜉1- coordinate axes, respectively.  

{
 
 

 
 
𝜀1
𝜀2
𝛾12
𝛾23
 𝛾13}

 
 

 
 

=

{
 
 

 
 
𝜀1
0

𝜀2
0

𝛾12
0

𝛾23
 𝛾13}

 
 

 
 

+ 𝜁

{
 
 

 
 
𝜅1
𝜅2
𝜅3
0
0 }
 
 

 
 

                                                                                                               (2) 

where 

𝜀1
0 =

1

𝛼1

𝜕𝑢0
𝜕𝜉1

+
𝑤0
𝑅1
,        𝜀2

0 =
1

𝛼2

𝜕𝑣0
𝜕𝜉2

+
𝑤0
𝑅2
,       𝛾12

0 =
1

𝛼1

𝜕𝑣0
𝜕𝜉1

+
1

𝛼2

𝜕𝑢0
𝜕𝜉2

         

𝛾23 = 
1

𝛼2

𝜕𝑤0
𝜕𝜉2

+∅2 −
𝑣0
𝑅2
,        𝛾13 =

1

𝛼1

𝜕𝑤0
𝜕𝜉1

+∅1 −
𝑢0
𝑅1
  

𝜅1 =
1

𝛼1

𝜕∅1
𝜕𝜉1

 ,     𝜅2 = 
1

𝛼2

𝜕∅2
𝜕𝜉2

,   

𝜅3 =
1

𝛼1

𝜕∅2
𝜕𝜉1

+
1

𝛼2
 
𝜕∅1
𝜕𝜉2

+
1

2
(
1

𝑅2
−
1

𝑅1
) (

1

𝛼1

𝜕𝑣0
𝜕𝜉1

−
1

𝛼2

𝜕𝑢0
𝜕𝜉2

)    

(3) 

 

2.2. Constitutive equations 

 

Composite shell layers stacked on each other with the principal material 1 axis of the kth layer 

is oriented at an angle  
(k)

 from the shell x1 coordinate in the counterclockwise sense and 

𝑥3
(𝑘)
= 𝜁. The stress-strain relations of the kth orthotropic lamina in the shell coordinate 

system are given as 

{
  
 

  
 
𝜎11

𝜎22

𝜏12

𝜏23

𝜏13}
  
 

  
 
(𝑘)

=

[
 
 
 
 
 
 𝑄11 𝑄12 𝑄16 0 0

𝑄12 𝑄22 𝑄26 0 0

𝑄16 𝑄26 𝑄66 0 0

0 0 0 𝑄44 𝑄45

0 0 0 𝑄45 𝑄55]
 
 
 
 
 
 
(𝑘)

{
  
 

  
 
𝜀11

𝜀22

𝛾12

𝛾23

𝛾13}
  
 

  
 

                                                                   (4) 

where (𝜎11, 𝜎22, 𝜏12, 𝜏23, 𝜏13)  are the stresses, (𝜀11, 𝜀22, 𝛾12, 𝛾23, 𝛾13) are the strains and  𝑄𝑖𝑗 

are the transformed reduced stiffnesses. 

Based on the FSDT shell, the stress resultants are given in a compact form as 

{
 
 

 
 
𝑁11
𝑁22
𝑁12
𝑀11
𝑀22

𝑀12}
 
 

 
 

= [
[𝐴] [𝐵]

[𝐵] [𝐷]
]

{
 
 

 
 
𝜀1
0

𝜀2
0

𝛾12
0

𝜅1
𝜅2
𝜅3 }

 
 

 
 

                                                                                                            (5) 

in which 

(𝐴𝑖𝑗, 𝐵𝑖𝑗, 𝐷𝑖𝑗) = ∑∫ 𝑄̅𝑖𝑗
(𝑘)
(1, 𝜁, 𝜁2)𝑑𝜁

𝜁𝑘+1

𝜁𝑘

𝑁

𝑘=1

                  (𝑖, 𝑗 = 1,2,6)                                           (6) 

where 𝜁𝑘 and 𝜁𝑘+1 are the coordinates of the upper and lower surfaces of the kth layer. 

Transverse force resultants are defined as 
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 {
𝑄2
𝑄1
}  =  𝐾𝑠[𝐴𝑠]{𝛾}                                                                                                                                 (7) 

where the parameter Ks is the shear correction factor. Here, Ks  is taken as 5/6. [As] are defined 

by 

(𝐴𝑠𝑖𝑗) = ∑∫ 𝑄̅𝑖𝑗
(𝑘)
𝑑𝜁

𝜁𝑘+1

𝜁𝑘

𝑁

𝑘=1

                  (𝑖, 𝑗 = 4,5)                                                                            (8) 

 

3. Dynamic Solution procedure 

 

The simply supported boundary conditions (SS-1) of cross-ply laminated doubly-curved shell 

base on FSDT are: 

u1(x1,0,t)=0,    u1(x1,b,t)=0,    u2(0, x2,t)=0,     u2(a, x2,t)=0, 

N1(0, x2,t)=0,    N1(a, x2,t)=0,   N2 (x1,0,t)=0,    N2 (x1,b,t)=0, 

1(x1,0,t)=0,    1(x1,b,t)=0,     2(0, x2,t)=0,    2(a, x2,t)=0, 

u3(x1,0,t)=0,    u3(x1,b,t)=0,   u3(0, x2,t)=0,    u3(a, x2,t)=0, 

M1(0, x2,t)=0,    M1(a, x2,t)=0,   M2 (x1,0,t)=0,    M2 (x1,b,t)=0, 

(9) 

The boundary conditions in (9) are satisfied by the following expansions of generalized 

displacement field: 

{
 
 

 
 
𝑢0(𝑥1, 𝑥2, 𝑡)

𝑣0(𝑥1, 𝑥2, 𝑡)

𝑤0(𝑥1, 𝑥2, 𝑡)

∅1(𝑥1, 𝑥2, 𝑡)

∅2(𝑥1, 𝑥2, 𝑡)}
 
 

 
 

= ∑∑

∞

𝑚=1

∞

𝑛=1

 

{
 
 

 
 
𝑈𝑚𝑛(𝑡) cos α𝑥1  sin 𝛽𝑥2
𝑉𝑚𝑛(𝑡) sin α𝑥1  cos β𝑥2
𝑊𝑚𝑛(𝑡) sin α𝑥1  sin β𝑥2
𝑋𝑚𝑛(𝑡) cos α𝑥1  sin β𝑥2
𝑌𝑚𝑛(𝑡) sin α𝑥1  cos β𝑥2}

 
 

 
 

                                                       (10) 

where =m/a,  = n/b. 

The mechanical loads are also expanded in double Fourier sine series 

𝑞(𝑥1, 𝑥2, 𝑡) = ∑∑𝑄𝑚𝑛(𝑡) sin α𝑥1  sin β𝑥2

∞

𝑚=1

∞

𝑛=1

                                                                             (11) 

where 

𝑄𝑚𝑛(𝑡) =
4

𝑎𝑏
 ∫ ∫ 𝑞(𝑥1, 𝑥2, 𝑡) sin α𝑥1  sin β𝑦 𝑑𝑥1𝑑𝑥2

𝑏

0

𝑎

0

                                                           (12) 

System of equations of motion of FSDT shell for simply supported cross-ply laminated shells 

are obtained using Hamilton’s principle. Five partially differential equations can be obtained 

in terms of mid-plane surface displacement (u0, v0, w0, 1, 2) by substituting the force and 

moment resultants from equations (5), (7) for the system equations of motion. Substituting the 

expansions (10) and (11) for the five partially differential equations yields the equations 

[𝑀𝑚𝑛]5×5{∆̈𝑚𝑛}5×1 +
[𝐾𝑚𝑛]5×5{∆𝑚𝑛}5×1 = {𝐹𝑚𝑛}5×1                                                              (13) 

here (∆𝑚𝑛)= (𝑈𝑚𝑛, 𝑉𝑚𝑛,𝑊𝑚𝑛, 𝑋𝑚𝑛, 𝑌𝑚𝑛) is the displacement vector. 

When we apply Laplace transform to Eq. (13) the following equation is obtained 

 [𝐷𝑚𝑛]{∆̅𝑚𝑛} = {𝐹̅𝑚𝑛} + {𝐹̅0}                                                                                                            (14) 
where, {∆̅𝑚𝑛} is the transformed displacement vector, {𝐹̅𝑚𝑛} is the transformed external force 

vector, {𝐹̅0} is the initial condition force vector and [𝐷𝑚𝑛] is the transformed dynamic 

stiffness matrix. The Eq. (14), transformed time-independent problem in spatial coordinate is 

solved numerically by Gauss elimination. 

[𝐷𝑚𝑛] and {𝐹̅0}  are given as 

 



M.F. ŞAHAN and Ö.F.TEKİN / ISITES2015 Valencia -Spain  2503 

 

 

[𝐷𝑚𝑛] = [𝐾𝑚𝑛] + 𝑧
2[𝑀𝑚𝑛]                                                                                                              (15) 

{𝐹̅0} = 𝑧[𝑀𝑚𝑛] {∆(0)} + [𝑀𝑚𝑛]{∆̇(0)}                                                                                         (16) 

where z is the parameter of Laplace transform. {∆(0)} is absolute initial displacement vector 

and {∆̇(0)} is absolute initial velocity vector. Here, initial conditions are taken to be zero.  

The case of internal viscoelastic damping is treated with the help of the correspondence 

principle, as described, for example, in Boley and Weiner [17]. The correspondence principle 

can be stated as follows: Laplace transform of the viscoelastic solution can be obtained from 

the Laplace transform of the elastic solution by replacing the elastic constants E and G by 

 𝐸𝑣 = 𝐸(1 + 𝑔 𝑧)  ,          𝐺𝑣 =   𝐺(1 + 𝑔 𝑧)                                                                                   (17) 
respectively. 

 

4. Results and discussion 

 

In the study, results are presented for simply supported (SS-1) orthotropic cross-ply laminated 

shells (a/b=1, a/h=10, R/a=10) based on FSDT subjected to suddenly-applied uniformly-

distributed step load. The numerical results in the following example are obtained with the 

proposed method, by using Navier approach combined with direct time integration technique 

and by ANSYS finite element software. ANSYS software results of the laminated shells are 

obtained using (8x8) mesh scheme. The mid-point deflection and the normal stress at the 

center of shell results are obtained and illustrated in following figures. In this example, the 

deflection and normal stress ( 𝜁 = −ℎ/2) at the mid-point of the laminated shell are showed 

in the graphic forms. The normal stresses are calculated at the bottom surface ( 𝜁 = −ℎ/2) of 

the shells. 

In this study, a distributed load with the amplitude q0=1000 N/m
2
 is applied suddenly on the 

laminated shell. In the examples, the following material properties are used. 

a=b=1 m., h=0.1 m., R1=R2=R=10 m. (a/b=1, R/a=10, a/h=10).  

E2=1x10
9 

N/m2, E1=25E2,  G12=G13=0.5E2,  G23=0.2E2, =0.25, =2000 kg/m
3
. 

First, the accuracy of the method will be verified on an example. Verification of the presented 

method is carried out by comparing the results with those obtained by Navier procedure in 

conjunction with Newmark method and ANSYS finite element software. Shell with (0
o
/90

o
) 

layers is first analyzed to confirm the proposed method. To achieve the effect of time 

increment (dt), several Laplace transform parameters (N) and time increment values (dt) have 

been used. The mid-point deflection (w) and the normal stress (y) for (0
o
/90

o
) laminates are 

presented in Figs. 2-3, respectively. 

 

 
Figure 2. Vertical mid-point displacement versus time for (0

o
/90

o
) laminates 
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Figure 3. Central stress versus time for (0

o
/90

o
) laminates 

 

Fig. 2 shows that the time-varying values of mid-point deflection achieved by the suggested 

method are identical for different dt (0.00008, 0.00016, 0.00032, 0.00064) and N (64, 128, 

256, 512). Similarly numerical results of y at the bottom surface of the shell that obtained 

with various time increments are identical (Fig. 3). The mid-point deflections obtained with 

the aid of Navier solution combined with Newmark method and ANSYS finite element 

software results are presented in Fig. 4. Similarly the normal stresses are presented in Fig. 5. 

 

 
Figure 4. Vertical mid-point displacement versus time for (0

o
/90

o
) laminates 

 

 
Figure 5. Central stress versus time for (0

o
/90

o
) laminates 
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Fig. 4 and Fig. 5 show that the time increments of 0.00008 and finer had to be considered for 

consistent results. An exact match is obtained by using a coarse time increment of 0.00064 in 

the present method as opposed to much finer increment of 0.00008 in the Newmark time 

integration method. Generally, our method gives more accurate results when compared to the 

aforementioned step by step integration method.  

Second, the materials of the shell laminates are assumed to be viscoelastic. In the viscoelastic 

case the Laplace transform of the viscoelastic solution can be obtained from the Laplace 

transform of the elastic solution by replacing the elastic constants. Damping can be 

incorporated very easily in the transformed domain. According to the correspondence 

principle the material constants are replaced with their complex counterparts in the Laplace 

domain. The mid-point deflection and the normal stress obtained with suggested method and 

ANSYS software are presented in Fig. 6 and Fig. 7, respectively. Figs. 6-7 show the results of 

elastic–dynamic and viscoelastic solution for various damping ratios (g=0.0001, 0.0003, 

0.0008). 

 

 
Figure 6. Vertical mid-point displacement versus time for (0

o
/90

o
) laminates 

 

 
Figure 7. Central stress versus time for (0

o
/90

o
) laminates 

 

Fig. 6 and Fig. 7 show that the results of proposed method and ANSYS software agree with 

each other. In the elastic–dynamic case, the results of the shells oscillates about the static 

state. In the viscoelastic case, the results die out with time. The effect of the damping ratio is 

obvious; increasing the damping ratio causes the response to reach the static response much 

faster.  
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Generally, the present method gives more accurate results when compared to the 

aforementioned step by step integration method. 

 

5. Conclusions 

 

Based on the presented method the following conclusions can be drawn: 

Application of Laplace transform reduces a dynamic problem to a static one, which can be 

solved numerically in the Laplace domain. In the Laplace domain one can incorporate 

damping effect very easily. In addition, it should be noted that natural frequencies and mode 

shapes are not needed in the solutions. The accuracy of the results of Newmark method 

depends on the time increment selection. The method proposed here, however, even with a 

coarse time increment gives highly accurate results. It is clear that the suggested procedure is 

much more efficient than the conventional step-by-step integration methods. The numerical 

results have proved that the present approach is a highly accurate and simple solution method 

and it can be easily applied to the shell problems. 
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