
 

Mechanical Component Design for Multiobjective Fuzzy Optimization by 

Using Genetic Algorithm 
 

 
*

1
Omer Kelesoglu, 

2
Yuksel Esen 

3
Cevdet Emin Ekinci 

*1,2,3 
Faculty of Technology, Department of Civil Engineering, Firat University,23119, Elazig, Turkey  

 

 

Abstract  
 
In this study, investigated the application of genetic algorithms for solving a multiobjective 

fuzzy optimization problem of mechanical component design. This method enables a flexible 

method for optimal system design by applying fuzzy objectives and fuzzy constraints. This paper 

presents a new design method for multiobjective mechanical component optimization problems. 

The conclude that genetic algorithms can produce good approximate solutions when applied to 

solve fuzzy optimization problems. 
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1. Introduction   

 
Characteristic to most engineering problems is that they are multiobjective. Usually there is no single 

solution for which all objectives are optimal. The solution to a multiobjective problem therefore 

comprises a set of solutions for which holds that there are no other solutions that are superior 

considering all objectives. These solutions are called Pareto-optimal. Hence, optimising a 

multiobjective problem is comprised of finding Pareto optimal solutions. 

 

Zadeh first introduced the concept of fuzzy set theory [1]. Then Zimmermann applied the fuzzy set 

theory concept with some suitable membership functions to solve linear programming problem with 

several objective functions [2]. Rao et al. applied a fuzzy optimization technique with membership 

functions to solve the multiobjective engineering problem [3]. Recently, fuzzy theory and membership 

function values are widely used in engineering design. The membership function making is also a 

useful tool to solve the multiobjective design problems [4]. For such cases, the application of the fuzzy 

set theory is effective, and multiobjective fuzzy optimization techniques have been developed [5-7].  

 

Genetic Algorithms were more fully developed after original work by Holland [8]. These approaches 

consist of optimization procedures based on principles inspired by natural evolution. Given a problem 

for which a closed-from solution is unknown, or impossible to obtain with classical methods, an initial 

randomly generated population of possible solutions is created. Its characteristics are then used in an 

equivalent string of genes or chromosomes that are later recombined with genes from other 

individuals. It can be shown that by using the natural selection process, the method gradually 

converges, towards the best-possible solution [9-10].  The GA manipulates a population of the 

potential solution for problems such as optimization. Genetic algorithms for multiobjective 

optimization problems have been proposed in the literature.  They can be used to compute the 

membership functions of fuzzy sets [11-12]. Kiyota et.al have proposed a multiobjective fuzzy 

optimization method by genetic algorithm [13]. Since then, several papers have evolved that use 

genetic algorithms [14-16]. Therefore, genetic algorithms are theoretically and empirically have been 

proven to process robust search capabilities in complex spaces, thus offering a valid approach to 

problems requiring efficient and effective searching [17].   
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In this paper, the multiobjective fuzzy optimization design method by GA is applied to design of 

mechanical component. Specifically, the λ-formulation is combined with a genetic algorithm for 

solving multiobjective fuzzy optimization problems with design variables. Finally, the proposed 

method is applied to a simple design problem of a spring and a welded beam.  

 

2. Multiobjective fuzzy optimization and membership function  

 

In general, the mathematical model of multiobjective fuzzy optimization problem as;  

                                                  
T

i xfxfxfxf )}(),...,(),({)(min 21  (1) 

subject to the design constraints:       
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Where x is the design vector, )(xf  is the vector of objective functions, )(xg j
 is the jth constraint 

function, and the superscripts l and u indicate the lower and upper bound values, respectively.    

 

This max–min problem can be solved by using the fuzzy λ-formulation technique that can be 

stated mathematically as [3]; 

 

The membership function is written )(xfi : 
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The minimum and maximum possible values of the design criteria in the all continuous space are 

represented as 
min

if  and  
max

if  respectively. 
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For solving the multiobjective programming problems, the following multiobjective λ-formulation 

[16] is adopted for the fuzzy nonlinear problem. For the multiobjective optimization problem, Pareto 

optimal sets to define its solution in this paper, the Pareto optimal solution concept is defined Eqs. (9) 

and (10). 

                                        )()( *xfxf ii   for all i,                ki ,...,1    (9) 

                                       )()( *xfxf ii   for at least one i,    .1 ki    (10) 
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Given set of feasible solutions P for the problem, a solution Px *
 is said to be Pareto optimal 

solution for the problem if and only if there is no any other solution Px , satisfying the following 

conditions: 

3. Genetic algorithms approach  

 

Genetic algorithms can be used to compute the membership functions of fuzzy optimization [18, 19].  

Given some functional mapping for a system, some membership functions and their shapes are 

assumed for the various fuzzy variables defined for a problem [20]. The membership functions are 

coded as bit strings that are then concatenated. An evaluation function is used to evaluate the fitness of 

each set of membership functions.  There are two possible ways to integrate fuzzy logic and genetic 

algorithms [21]. One involves the application of genetic algorithms for solving optimization and 

search problems related to fuzzy systems [22-24]. The other, is the use of fuzzy tools and fuzzy logic-

based techniques for modeling different genetic algorithm components and adapting genetic algorithm 

control parameters, with the goal of improving performance [21, 25-27]. Now, a genetic algorithm for 

solving the fuzzy optimal profit problem is given below [28]. 

 

To solve the problem, given in Eq.(5), a GA is used. Since a GA seeks a set of solutions for multiple 

objectives in a group, it can offer several candidates to the engineer. An outline of the fuzzy 

multiobjective genetic algorithm for rule selection is as follows [16]. 

 

3.1. Representation and initialization 

An initial population of size n is randomly generated from 
1]1,0[ k
 according to the uniform 

distribution in the closed interval ]1,0[ . Let the population be 

 

                                                        ),...,,(
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where ni ,...,2,1  and ij  is a real number in ]1,0[ , .,...,2,1,0 kj   Each individual ix  in a 

population is a chromosome. For each chromosome ix , ni ,...,2,1 , the centroid )( ixeval  is 

calculated as the fitness value. The chromosomes in the population cab be rated in terms of their 

fitness values. Let the total fitness value of the population be  .)(
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 is calculated [16].  

 

 

3.2 Calculation of the fitness value for each chromosome 

This paper calculates the fitness value, )( ixeval  for each chromosome ),...,2,1( nixi   as follows. 

For each chromosome ix  membership function values for the objectives and constraints are first 

calculated. If 
i)( min , is the membership function value corresponding to the ith chromosome, ix , then   

                    

                                  )]},([)],...,([)],([min{)( 1100min ikkiii xfxfxf     ,...,m,k 21   (12) 

 

The fitness value for i  is calculated as  

                                                               iixeval )()( min  (13) 

 

4. Numerical example 
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4.1 Spring design  

A helical compression spring needs to be designed for minimum volume and for minimum stress that 

show in Figure 1. Three variables are identified: The design variables are the number of spring coils N, 

the outside diameter of the spring, D and the spring wire diameter d. this example contains integer, 

discrete and continuous variables. Of these variables, N is an integer variable, d is a discrete variable 

and D is a real-parameter variable. Donating the variable vector ),,,(),,( 321 DdNxxxx   write 

multiobjective fuzzy optimization problem as follows: 
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Table 1: GA parameters for the spring design problem 

Population  100  

Generations 3000 

Reproduction type 2 points crossover  

Selection type  Rank selection 

Mutation probability 0.005 

Reproduction of Crossover  0,85 
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The parameters used are as follows:  
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The maximum working load, ,1000max lbP   allowable maximum shear stress ,189ksiS   

,30 3

max inchV  maximum free length ;14max inchl   minimum wire diameter ;2.0
min

inchd   

maximum outside diameter of the spring ;3max inchD   preload compression force ;300lbP   

allowable maximum deflection under preload inchpm 6  and deflection from preload position to 

maximum load position .25.1 inchw       
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Figure 1: The spring design problem 

 

The design variables are bounded as 3,2,1;
)()(

 ixxx
u

ii
l

i  where the limiting values are taken as 

,1
min
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d

l
xi  max2min3 Dxd  and 

3

max
3min

D
xd   [29, 30]. The GA parameters used for the 

multiobjective fuzzy optimization are given in Table 1. 

From the results obtained by the classical optimization with the upper boundary values of the 

variables, ,101.16max
1 f ,632.2min

1 f   ,189000max
2 f 335.72489min

2 f  are found. 

 

If the above values are entered instead of Eqs. (3) and (4). 
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In the fuzzy formulation, the objectives are normalized as 

                                                .2,1;
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The normalization of Eq.(25) yields the minimum and maximum values of )(xi  as zero and one, 

respectively. The equations of 1 and 2 membership functions will ensure us to achieve, optimum 

fuzzy decision by finding many  parameters which ensure the equivalency. The results of λ-

formulation denote that an overall satisfaction level of 66,60% has been achieved in the presence of 

multiple, conflicting, objectives and fuzzy information. 

This paper applies proposed method to this problem and repeats the process for 3000 generations. At 

the 1135th generation of the chromosome and constraint design variables are obtained in the Table 2. 
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Table 2: The extreme solutions for the spring design problem 

 

4.2 Welded beam structure  

Considered, as the two examples, a welded beam structure show in Figure 2. The depth of the weld 

(h), the length of the weld (l), the height (t) and thickness (b) of the beam are to be chosen so as to 

minimize the cost and deflection of the welded beam. There are constraints on the maximum shear 

stress ),( bending stress in the beam ),(  buckling load on the bar )( cP  and side constraints. The 

multiobjective optimization problem formulated under the design variable vector 

   TT
btlhxxxxx ,,,,,,

4321
   as follows: 

 

 

Figure 2: The welded beam design problem 
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The parameters used are as follows:  
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Expressions in which ,6000 lbP   ,14inchL   ,1030 6 psixE   ,1012 6 psixG   

,13600max psi  .30000max psi  The variables are initialization in the following range: 

Membership Function  Design Variables Min. Volume Min. Stress 

  1x  

(inch) 

2x  

(inch)  
3x  

(inch) 
4x  

(inch) 
1min f  

(inch)
3 

2min f  

(inch) 

0.8716 0.7753 0.5320 10.0000 0,9154 6,7534 0.0024 
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0.5,125.0  bh  and 01010 .tl,.   [29, 30]. Constraints and objective functions are handled 

using   formulation.   parameters of 1 and 0 are used for the first and second objective functions, 

respectively.  

 

The GA parameters used for the multiobjective fuzzy optimization are given in Table 2. The results of 

constrained minimization of the individual objective functions yield  

 2443,0,2986.8,2152.6,2443.0*

1 x  ,3815,2 3min
1 inchf   inchf 0157.0max

2   and          

 0000.5,0000.10,5434.0,5574.1*

2 x  
3max

1 4403.36 inchf  , .0004.0min
2 inchf  The 

normalization of Eq.(25) yields the minimum and maximum values of )(xi  as zero and one, 

respectively. This paper applies proposed method to this problem and repeats the process for 3,000 

generations. At the 1425
th
 generation of the chromosome and constraint design variables are obtained. 

The results of applying the fuzzy multiobjective genetic algorithm presented in this paper to the 

welded beam design example are presented in Table 3. 

 

Table 3: The extreme solutions for the welded beam design problem 

Membership Function  Design Variables Min. Volume Min. Stress 

  1x  2x  

(inch)  
3x  

(inch) 
  1x  

0.6660 9 0.3805 1.8149 0.6660 9 

 

 

5. Conclusions  

 

This study has investigated the genetic algorithm approach to solving fuzzy optimization equations by 

using the membership functions of fuzzy parameters. In this approach discusses a multiobjective 

optimization problem with genetic algorithm and fuzzy λ-formulation equations.  

Pareto optimal solutions for the problem of finding a genetic algorithm are used to derive the 

satisficing decisions. The feasibility of solutions is always maintained during the crossover and 

mutation operations. The proposed genetic algorithm is capable of determining the satisficing 

solutions set for both linear and nonlinear problems. 

The results of this study may lead to the development of effective genetic algorithms for solving 

general fuzzy optimization problems.  In summary, the fuzzy concept of the proposed genetic 

algorithm approach is different and gives almost the same results as the traditional methods. The 

results are encouraging and suggest immediate application of the proposed method to other more 

complex engineering design problems (Refer to Tables 2 and 3 results). 
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