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Abstract: 
 
Since the physical constraints on micro computing devices have forced the researchers to design next 

generation chips, the significance of the parallelization and distributed computing grow in importance. 

In this study, a sequential implementation of the Particle Swarm Optimization algorithm is converted 

into a concurrent version, which is executed on the cores of both CPU and GPU. For this reason, 

CUDA and OpenMP libraries are operated on the parallel algorithm to make a concurrent execution on 

CPU and GPU, respectively. The aim of this study is to compare CPU and GPU implementation of the 

PSO algorithm as regards the average execution time of independent Monte Carlo runs and 

computation architecture. For this purpose, nine benchmark functions are selected as test problems, 

and the parallel algorithm is executed on different processing units. The results show that parallel 

performance of the algorithm on different architectures outperforms to some application oriented 

computation units. 
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1. Introduction 

 

Many engineering problems are based on finding the best possible solution for any specific 

configuration/system. For this purpose, beginning with the mathematicians who solved 

optimization problems that are related to geometric studies, new algorithms have been developed 

in order to find better solutions. Since the real-world engineering problems are very complicated 

when compared to geometric studies, the classical optimization algorithms are not able to solve 

these problems demanding complex mathematical computations. Therefore, some methods which 

are greatly developed by observation of the nature such as relations between matters and living 

beings are introduced, and they are known as heuristic approaches. Genetic Algorithm [1], Ant 

Colony Optimization [2], Differential Evolution [3], and Particle Swarm Optimization (PSO) [4] 

can be mentioned as examples of the heuristic approaches. Even though these algorithms yield 

better results for many engineering problems, the execution time of sequential codes or 

implementations restrict the research in this are as regards the time limitations; so that a mid-level 

problem can be solved in a couple of days with a sequential algorithm, and consequently the 

problem becomes too costly to be solved. Therefore, especially in the last decade, engineers have 

applied parallelization techniques and libraries in order to decrease the cost of a study/project and 

the execution time of the parallelized algorithms. Hence, in this study, the sequential PSO 

algorithm is parallelized in two different manners (i.e. via different techniques aimed for 
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deployment on different architectures), and these two parallel PSO (PPSO) algorithms are 

executed on both CPU and GPU. 

 

Currently, two major parallelization techniques can be mentioned: These are  

a) Distributed computing [5] via the Message passing Interface (MPI), in which the algorithm is 

divided/duplicated into sub-codes, and then these codes transferred to the distributed 

computational units. Each unit executes relatively tiny piece of the code, then they transfer the 

response to the main computer. There is not any restriction related to the distance between 

computation units, so that any unit could be installed elsewhere (e.g. even in another country 

and/or continent),  

b) Multicore processing [6]; for which parallel processing units are at a single device such as 

personal computer, workstation or server, then the code is executed on different cores of on-

board devices like CPU and/or GPU. In this paper, the multicore processing of PPSO algorithm is 

investigated with respect to the parallel processing unit. 

 

There are two main architectures (CPU and GPU) in a personal computer device. The tasks 

assigned for these two units differ each other. The CPU composes of only a few numbers of very 

fast cores, which have the ability to execute relatively complex operations. On the other hand 

GPU consists of many numbers of slow cores that are able to execute fundamental operations. 

Previously, the authors have demonstrated that the PPSO code executed on different GPU 

architectures is approximately 20% faster than sequential code run on CPU [6]. However, the 

performance of PPSO executed on the cores of different CPU architecture and comparison with 

GPU is a question that should be investigated. Therefore, in this study, the PPSO algorithm is 

implemented on different CPU and GPU architectures. The average execution time of ten 

independent Monte Carlo runs (executions) is considered as a performance indicator.  

 

This paper is composed of 3 sections in addition to the conclusion. In Section 2, parallelization of 

the PSO algorithm with CUDA and OpenMP is discussed. In Section 3, the performance of the 

PPSO algorithms on different architectures is investigated with respect to complexity of the 

computation units. 

 

 

2. Parallelization of Particle Swarm Optimization 

 

Since it is a population based algorithm, Particle Swarm Optimization (PSO) is a good candidate 

for parallelization. The behavior of the algorithm greatly depends on the interactions between 

particles, where the members of the population are called particles (N). Each particle has velocity 

(vi, i=1,2,…,N) and position (xi, i=1,2,…,N). At the end of each iteration (k), the particles change 

their position based on their current velocity. The well-known physical position update rule, 

which is applied on this algorithm, is given in (1):  

 

tkvkxkx iii  ][][]1[       (1) 

 

Equation (1) implies that the new position is the sum of the previous position with multiplication 
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of velocity and time interval, which is assumed to be the time interval for each consecutive 

iteration (|(k+1) – k|) and usually considered to be unity (∆t=1). Hence, it can be extracted from 

(1) that, the movement of any particle in the swarm greatly depends on its velocity. The velocity 

update formulation is presented in (2): 

 

   ][][][][][][ 21 kxkpRckxkpRckvkv igiiii    (2) 

 

where c1 and c2 are the control parameters of the algorithm (c1=c2=1.498), pi is the personal best 

position of  i’th particle, and pg is the global best position among the population [4]. 

 

The PSO algorithm can be summarized as follows:  

a) the position and velocity values of each particle are assigned randomly,  

b) At the beginning of iteration, cost function is evaluated (f(xi)) for each particle’s position (xi),  

c) Personal (the best position of each individual between the iteration 1 and k) and global best 

(the best position among the population at the iteration k) positions are determined based on their 

cost values,  

d) The position of each particles is altered by using (1) and (2),  

e) if the maximum number of iteration is not equal to current iteration k, then step b is revisited; 

else the algorithm is terminated. 

 

The structure of PSO algorithm is based on the repeated action so that same mathematical 

expression is executed for all particles, which makes the algorithm quite suitable for 

parallelization. Figure 1 presents only the general idea beneath the parallelization of particle 

swarm optimization, since the parallelization greatly depends on the hardware/architecture. For 

example, the core indices and the number of cores depend on the architecture. Ideally, it is 

desired to execute each particle’s operations in a separate core. But in most cases, the number of 

cores is not sufficient to achieve this since some cores are already occupied by the operating 

system. Anyway, Figure 1 presents a good description for explaining PPSO. PPSO can be briefly 

summarized as follows:  

a) The position and velocity values of each particle are assigned randomly at different cores, if 

there are sufficient number of cores, then these parts is executed only at a single instruction run 

instead of N instruction runs.  

b) At the beginning of the iteration, the cost function is evaluated (f(xi)) for each position (xi) at 

each core,  

c) Personal (the best position of each individual between the iteration 1 and k) and global best 

(the best position among the population at the iteration k) positions are determined according to 

the cost values. This step includes calculation of taking the minimum of a vector, which is 

implemented by association of many cores. However, due to some subroutines (comparisons and 

statements), all cores might not be uses efficiently.  

d) The position of each particle is altered by using (1) and (2) at each core  

e) if the maximum number of iteration is not equal to current iteration k, then step b is revisited; 

else the algorithm is terminated. 
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Figure 1. A sample demonstration for parallel particle swarm optimization 

 

 

 

2.1. Parallelization on GPU with CUDA  

 

In the last decade, graphical boards are preferred for complex computations since they can have 

more than a thousand cores. Hence, the graphical processing units (GPUs) have become the 

dominant and leading parallel computation units in the market [7]. Even though numerous cores 

allow the problem in hand to be solved in a relatively short time, programming of GPU oriented 

codes becomes harder and more complex. However, with the introduction of the CUDA package, 

which is a set of libraries composed of well-written codes and algorithms, programming becomes 

much easier and straightforward for researchers. In this study, the general framework of PPSO 

algorithm, which is demonstrated on Figure 1, is implemented on the GPU board with the aid of 

CUDA libraries [6]. 
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2.2. Parallelization on CPU with OpenMP 

 

In a general manner, the codes which are written in C/C++ environment are executed on CPU on 

a single core. Since the numbers of the cores in CPU have increased, programmers desire to use 

these cores with simple modifications on sequential codes. Therefore, the OpenMP package was 

introduced for this purpose [8]. This package contains compiler directives, run time routines and 

environment variables. Since all data is recorded on the globally shared memory on the CPU, 

OpenMP programming is much simpler compared to CUDAAs part of this study, PPSO is also 

implemented on different CPU architectures. 

 

3. Results 

 

The aim of this study is demonstrate the performance of PPSO algorithm on different hardware 

units. Therefore, some benchmark problems are selected. Table 1 gives these nine benchmark 

problems, which contains unimodal and multimodal functions. The algorithm has the following 

parameter settings: The swarm size is 100, number of iterations is 1000, the problem dimension 

(n) is 10, and the number of independent Monte Carlo runs is 10. 

 

Table 1.Benchmark functions 

Function Search Space Optimum Value 
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Instead of recording the execution time for each independent run, in this study, the total execution 

time is recorded, and then the average time is calculated. Hence, the average execution time is 

taken as a metric of this study. The performance comparison among different hardware (CPU: 

Intel Core i5-2450M, AMD Athlon X2 270, Intel Core i5-3470s; GPU: GTX550Ti, GT610, GT 

520MX, Quadro K5000, Tesla K20) is practiced on two different setups. In the first setup, 

sequential PSO algorithm is implemented on single core CPU, and the results are compared with 

the average execution time of PPSO on GPU. Table 2 presents this comparison. 

 

 

Table 2. Average execution times of 10 independent Monte Carlo runs for sequential and parallel implementations 

of the PSO algorithm (ms) 

Function 

C/C++ - Sequential CUDA - Parallel 

Intel 

Core i5-

2450M 

AMD 

Athlon 

X2 270 

Intel 

Core i5-

3470S 

GTX 

550Ti 

GT 610 GT 

520MX 

Quadro 

K5000 

Tesla 

K20 

f1 2824.5 672 1038.15 236.63 361.39 554.91 456.51 170.89 

f2 2777.35 696 1025.5 244.09 384.72 573.66 450.4 170.32 

f3 3162.89 919 1284.3 258.72 411.652 608.13 497.69 192.46 

f4 1933.5 590 908.04 354.03 433 355.6 496.86 191.16 

f5 2195.1 691.5 1261 295.44 488.28 360.58 591.53 200.76 

f6 1924.15 729.5 1034.55 306.52 509.25 353.78 590.59 203.6 

f7 1603.44 758.5 574.95 312.37 516.3 331.66 591.02 203.55 

f8 3195.89 1001.5 1349.65 357.32 624.33 425.36 763.43 263.78 

f9 3928.35 1213.5 1569.8 466 884.16 633.43 1331.83 419.43 

 

 

 

Table 2 clearly presents that the GPU implementation outperforms to the sequential code. For a 

professional computation device NVIDIA Tesla K20, execution on the GPU is approximately 

100 times faster than the mobile CPU processor. The results also demonstrate that even the 

performance of the slowest GPU device is better than all CPU architecture discussed in this 

paper. Also from Table 2, it is clear that the application oriented GPU device NVIDIA Quadro 

K5000 demonstrated almost the same performance with the low cost GPU architecture GT 610. 

The reason behind this unexpected result that the Quadro device is a highly application oriented 

device, so that that device contains many fast image processing functions. Therefore, it can be 

claimed that this device is not suitable for optimization algorithm parallelization. 

 

In the second setup, PPSO is implemented on two different parallel devices, which are CPU and 

GPU. The average execution times for these implementations are presented in Table 3. It is clear 

from the table that the fastest device for parallelization is the NVIDIA Tesla K20 GPU board, 

which is approximately 5 times faster than other devices. The results demonstrate that the mobile 

devices perform the slowest execution times. Also, from the results, a good CPU configuration 

performs almost the same as mid-level GPU devices. Even if the PPSO implementation on CPU 
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produces almost same performance as same GPU boards, CPUs are sometimes unreliable so that 

the operating system assigns some tasks, which interrupt the parallel operations. 

 

The results presented in Tables 2 and 3 indicate that for some algorithms, the parallelization on 

CPU may be better than or comparable to GPU implementations. The performance of PPSO is 

outperforms only at a high-level computing device NVIDIA Tesla K20.  

 

 

Table 3.Average execution times of 10 independent Monte Carlo runs for CUDA parallel and OpenMP parallel 

implementations of the PSO algorithm (ms) 

Function 

OpenMP - Parallel CUDA - Parallel 

Intel Core 

i5-2450M 

AMD 

Athlon X2 

270 

Intel Core 

i5-3470S 

GTX 

550Ti 

GT 610 GT 

520MX 

Quadro 

K5000 

Tesla 

K20 

f1 1437.09 534.5 324 236.63 361.39 554.91 456.51 170.89 

f2 1482.34 509.5 297.04 244.09 384.72 573.66 450.4 170.32 

f3 1640.3 635.5 347.95 258.72 411.652 608.13 497.69 192.46 

f4 1195.69 460 220.35 354.03 433 355.6 496.86 191.16 

f5 1343.19 554 258.54 295.44 488.28 360.58 591.53 200.76 

f6 1225.09 572.5 222.8 306.52 509.25 353.78 590.59 203.6 

f7 1293.39 609 233.14 312.37 516.3 331.66 591.02 203.55 

f8 2038.4 781 327.85 357.32 624.33 425.36 763.43 263.78 

f9 1893.09 842 439.85 466 884.16 633.43 1331.83 419.43 

 

 

 

Conclusions 

 

In this study, PPSO is implemented on eight different hardware devices (CPU: Intel Core i5-

2450M, AMD Athlon X2 270, Intel Core i5-3470s; GPU: GTX550Ti, GT610, GT 520MX, 

Quadro K5000, Tesla K20), and three different software models (sequential, OpenMP and 

CUDA). Nine benchmark functions are selected as test problems, and average execution time is 

taken as a performance criterion. The results show that:  

a) parallel implementations are faster than sequential codes as expected,  

b) application oriented hardware might demonstrate unexpectedly the worst performance;  

c) in general, GPU implementations outperform to CPU implementations, and  

d) instead of mid-level GPU devices, the programmers can select CPUs as target devices, which 

prove to be more cost-effective.  

 

As a future study, codes on high-level CPU architectures will be implemented, and hybrid 

implementations (using CPU and GPU cores) will be performed. 
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