
*Corresponding author: Address: Faculty of Engineering, Department of Electrical and Electronics Engineering,

TED University, Kolej, Ankara, TURKEY. E-mail: tolga.altinoz@tedu.edu.tr

 Comparison of Parallel CUDA and OpenMP Implementations of

Particle Swarm Optimization

*1

O. Tolga Altinoz and
2
A. Egemen Yılmaz

*1
Department of Electrical and Electronics Engineering, TED University, Kolej, Ankara, Turkey

2
Department of Electrical and Electronics Engineering, Ankara University, Golbasi, Ankara, Turkey

Abstract:

Since the physical constraints on micro computing devices have forced the researchers to design next

generation chips, the significance of the parallelization and distributed computing grow in importance.

In this study, a sequential implementation of the Particle Swarm Optimization algorithm is converted

into a concurrent version, which is executed on the cores of both CPU and GPU. For this reason,

CUDA and OpenMP libraries are operated on the parallel algorithm to make a concurrent execution on

CPU and GPU, respectively. The aim of this study is to compare CPU and GPU implementation of the

PSO algorithm as regards the average execution time of independent Monte Carlo runs and

computation architecture. For this purpose, nine benchmark functions are selected as test problems,

and the parallel algorithm is executed on different processing units. The results show that parallel

performance of the algorithm on different architectures outperforms to some application oriented

computation units.

Key words: Particle swarm optimization, parallel programming, CUDA, OpenMP

1. Introduction

Many engineering problems are based on finding the best possible solution for any specific

configuration/system. For this purpose, beginning with the mathematicians who solved

optimization problems that are related to geometric studies, new algorithms have been developed

in order to find better solutions. Since the real-world engineering problems are very complicated

when compared to geometric studies, the classical optimization algorithms are not able to solve

these problems demanding complex mathematical computations. Therefore, some methods which

are greatly developed by observation of the nature such as relations between matters and living

beings are introduced, and they are known as heuristic approaches. Genetic Algorithm [1], Ant

Colony Optimization [2], Differential Evolution [3], and Particle Swarm Optimization (PSO) [4]

can be mentioned as examples of the heuristic approaches. Even though these algorithms yield

better results for many engineering problems, the execution time of sequential codes or

implementations restrict the research in this are as regards the time limitations; so that a mid-level

problem can be solved in a couple of days with a sequential algorithm, and consequently the

problem becomes too costly to be solved. Therefore, especially in the last decade, engineers have

applied parallelization techniques and libraries in order to decrease the cost of a study/project and

the execution time of the parallelized algorithms. Hence, in this study, the sequential PSO

algorithm is parallelized in two different manners (i.e. via different techniques aimed for

O.T. ALTINOZ and A.E. YILMAZ/ ISITES2014 Karabuk - TURKEY 1906

deployment on different architectures), and these two parallel PSO (PPSO) algorithms are

executed on both CPU and GPU.

Currently, two major parallelization techniques can be mentioned: These are

a) Distributed computing [5] via the Message passing Interface (MPI), in which the algorithm is

divided/duplicated into sub-codes, and then these codes transferred to the distributed

computational units. Each unit executes relatively tiny piece of the code, then they transfer the

response to the main computer. There is not any restriction related to the distance between

computation units, so that any unit could be installed elsewhere (e.g. even in another country

and/or continent),

b) Multicore processing [6]; for which parallel processing units are at a single device such as

personal computer, workstation or server, then the code is executed on different cores of on-

board devices like CPU and/or GPU. In this paper, the multicore processing of PPSO algorithm is

investigated with respect to the parallel processing unit.

There are two main architectures (CPU and GPU) in a personal computer device. The tasks

assigned for these two units differ each other. The CPU composes of only a few numbers of very

fast cores, which have the ability to execute relatively complex operations. On the other hand

GPU consists of many numbers of slow cores that are able to execute fundamental operations.

Previously, the authors have demonstrated that the PPSO code executed on different GPU

architectures is approximately 20% faster than sequential code run on CPU [6]. However, the

performance of PPSO executed on the cores of different CPU architecture and comparison with

GPU is a question that should be investigated. Therefore, in this study, the PPSO algorithm is

implemented on different CPU and GPU architectures. The average execution time of ten

independent Monte Carlo runs (executions) is considered as a performance indicator.

This paper is composed of 3 sections in addition to the conclusion. In Section 2, parallelization of

the PSO algorithm with CUDA and OpenMP is discussed. In Section 3, the performance of the

PPSO algorithms on different architectures is investigated with respect to complexity of the

computation units.

2. Parallelization of Particle Swarm Optimization

Since it is a population based algorithm, Particle Swarm Optimization (PSO) is a good candidate

for parallelization. The behavior of the algorithm greatly depends on the interactions between

particles, where the members of the population are called particles (N). Each particle has velocity

(vi, i=1,2,…,N) and position (xi, i=1,2,…,N). At the end of each iteration (k), the particles change

their position based on their current velocity. The well-known physical position update rule,

which is applied on this algorithm, is given in (1):

tkvkxkx iii][][]1[(1)

Equation (1) implies that the new position is the sum of the previous position with multiplication

O.T. ALTINOZ and A.E. YILMAZ/ ISITES2014 Karabuk - TURKEY 1907

of velocity and time interval, which is assumed to be the time interval for each consecutive

iteration (|(k+1) – k|) and usually considered to be unity (∆t=1). Hence, it can be extracted from

(1) that, the movement of any particle in the swarm greatly depends on its velocity. The velocity

update formulation is presented in (2):

][][][][][][21 kxkpRckxkpRckvkv igiiii (2)

where c1 and c2 are the control parameters of the algorithm (c1=c2=1.498), pi is the personal best

position of i’th particle, and pg is the global best position among the population [4].

The PSO algorithm can be summarized as follows:

a) the position and velocity values of each particle are assigned randomly,

b) At the beginning of iteration, cost function is evaluated (f(xi)) for each particle’s position (xi),

c) Personal (the best position of each individual between the iteration 1 and k) and global best

(the best position among the population at the iteration k) positions are determined based on their

cost values,

d) The position of each particles is altered by using (1) and (2),

e) if the maximum number of iteration is not equal to current iteration k, then step b is revisited;

else the algorithm is terminated.

The structure of PSO algorithm is based on the repeated action so that same mathematical

expression is executed for all particles, which makes the algorithm quite suitable for

parallelization. Figure 1 presents only the general idea beneath the parallelization of particle

swarm optimization, since the parallelization greatly depends on the hardware/architecture. For

example, the core indices and the number of cores depend on the architecture. Ideally, it is

desired to execute each particle’s operations in a separate core. But in most cases, the number of

cores is not sufficient to achieve this since some cores are already occupied by the operating

system. Anyway, Figure 1 presents a good description for explaining PPSO. PPSO can be briefly

summarized as follows:

a) The position and velocity values of each particle are assigned randomly at different cores, if

there are sufficient number of cores, then these parts is executed only at a single instruction run

instead of N instruction runs.

b) At the beginning of the iteration, the cost function is evaluated (f(xi)) for each position (xi) at

each core,

c) Personal (the best position of each individual between the iteration 1 and k) and global best

(the best position among the population at the iteration k) positions are determined according to

the cost values. This step includes calculation of taking the minimum of a vector, which is

implemented by association of many cores. However, due to some subroutines (comparisons and

statements), all cores might not be uses efficiently.

d) The position of each particle is altered by using (1) and (2) at each core

e) if the maximum number of iteration is not equal to current iteration k, then step b is revisited;

else the algorithm is terminated.

O.T. ALTINOZ and A.E. YILMAZ/ ISITES2014 Karabuk - TURKEY 1908

 Core 1 Core 2 …. Core N

Generate random numbers

Iteration Begins

Initial

random

position of

particle 1

(x1)

Initial

random

position of

particle 2

(x2)

Initial

random

position of

particle N

(xN)

Assign initial velocity for each particle by

using random number generator

Evaluate

position of

particle 1

(f(x1))

Evaluate

position of

particle 2

(f(x2))

Evaluate

position of

particle N

(f(xN))

...

...

Update

position of

x1

Update

velocity of

v1

Iteration Ends

Update

position of

x2

Update

velocity of

v2

Update

position of

xN

Update

velocity of

vN

...

...

Find global and personal best cost value

Figure 1. A sample demonstration for parallel particle swarm optimization

2.1. Parallelization on GPU with CUDA

In the last decade, graphical boards are preferred for complex computations since they can have

more than a thousand cores. Hence, the graphical processing units (GPUs) have become the

dominant and leading parallel computation units in the market [7]. Even though numerous cores

allow the problem in hand to be solved in a relatively short time, programming of GPU oriented

codes becomes harder and more complex. However, with the introduction of the CUDA package,

which is a set of libraries composed of well-written codes and algorithms, programming becomes

much easier and straightforward for researchers. In this study, the general framework of PPSO

algorithm, which is demonstrated on Figure 1, is implemented on the GPU board with the aid of

CUDA libraries [6].

O.T. ALTINOZ and A.E. YILMAZ/ ISITES2014 Karabuk - TURKEY 1909

2.2. Parallelization on CPU with OpenMP

In a general manner, the codes which are written in C/C++ environment are executed on CPU on

a single core. Since the numbers of the cores in CPU have increased, programmers desire to use

these cores with simple modifications on sequential codes. Therefore, the OpenMP package was

introduced for this purpose [8]. This package contains compiler directives, run time routines and

environment variables. Since all data is recorded on the globally shared memory on the CPU,

OpenMP programming is much simpler compared to CUDAAs part of this study, PPSO is also

implemented on different CPU architectures.

3. Results

The aim of this study is demonstrate the performance of PPSO algorithm on different hardware

units. Therefore, some benchmark problems are selected. Table 1 gives these nine benchmark

problems, which contains unimodal and multimodal functions. The algorithm has the following

parameter settings: The swarm size is 100, number of iterations is 1000, the problem dimension

(n) is 10, and the number of independent Monte Carlo runs is 10.

Table 1.Benchmark functions

Function Search Space Optimum Value

n

i

ixf
1

2

1
 n12.5,12.5 0

n

i

ixif
1

2

2 . n12.5,12.5 0

n

i

i

j

jxf
1

2

1

3 n12.5,12.5 0

1

1

222

14 1100
n

i

iii xxxf n048.2,048.2 0

n

i

ii xxnf
1

2

5 2cos1010 n12.5,12.5 0

n

i

i

n

i

i x
n

xef
11

2

6 2cos
1

exp
2

1
2.0exp2020 n30,15 0

n

i

i
n

i

i

i

xx
f

11

2

7 cos
4000

1 n600,600 0

n

i

i

ixf
1

1

8 n1,1 0

20

1

2

9 sinsin

n

i

i
i

ix
xf

 n,0 -4.687

O.T. ALTINOZ and A.E. YILMAZ/ ISITES2014 Karabuk - TURKEY 1910

Instead of recording the execution time for each independent run, in this study, the total execution

time is recorded, and then the average time is calculated. Hence, the average execution time is

taken as a metric of this study. The performance comparison among different hardware (CPU:

Intel Core i5-2450M, AMD Athlon X2 270, Intel Core i5-3470s; GPU: GTX550Ti, GT610, GT

520MX, Quadro K5000, Tesla K20) is practiced on two different setups. In the first setup,

sequential PSO algorithm is implemented on single core CPU, and the results are compared with

the average execution time of PPSO on GPU. Table 2 presents this comparison.

Table 2. Average execution times of 10 independent Monte Carlo runs for sequential and parallel implementations

of the PSO algorithm (ms)

Function

C/C++ - Sequential CUDA - Parallel

Intel

Core i5-

2450M

AMD

Athlon

X2 270

Intel

Core i5-

3470S

GTX

550Ti

GT 610 GT

520MX

Quadro

K5000

Tesla

K20

f1 2824.5 672 1038.15 236.63 361.39 554.91 456.51 170.89

f2 2777.35 696 1025.5 244.09 384.72 573.66 450.4 170.32

f3 3162.89 919 1284.3 258.72 411.652 608.13 497.69 192.46

f4 1933.5 590 908.04 354.03 433 355.6 496.86 191.16

f5 2195.1 691.5 1261 295.44 488.28 360.58 591.53 200.76

f6 1924.15 729.5 1034.55 306.52 509.25 353.78 590.59 203.6

f7 1603.44 758.5 574.95 312.37 516.3 331.66 591.02 203.55

f8 3195.89 1001.5 1349.65 357.32 624.33 425.36 763.43 263.78

f9 3928.35 1213.5 1569.8 466 884.16 633.43 1331.83 419.43

Table 2 clearly presents that the GPU implementation outperforms to the sequential code. For a

professional computation device NVIDIA Tesla K20, execution on the GPU is approximately

100 times faster than the mobile CPU processor. The results also demonstrate that even the

performance of the slowest GPU device is better than all CPU architecture discussed in this

paper. Also from Table 2, it is clear that the application oriented GPU device NVIDIA Quadro

K5000 demonstrated almost the same performance with the low cost GPU architecture GT 610.

The reason behind this unexpected result that the Quadro device is a highly application oriented

device, so that that device contains many fast image processing functions. Therefore, it can be

claimed that this device is not suitable for optimization algorithm parallelization.

In the second setup, PPSO is implemented on two different parallel devices, which are CPU and

GPU. The average execution times for these implementations are presented in Table 3. It is clear

from the table that the fastest device for parallelization is the NVIDIA Tesla K20 GPU board,

which is approximately 5 times faster than other devices. The results demonstrate that the mobile

devices perform the slowest execution times. Also, from the results, a good CPU configuration

performs almost the same as mid-level GPU devices. Even if the PPSO implementation on CPU

O.T. ALTINOZ and A.E. YILMAZ/ ISITES2014 Karabuk - TURKEY 1911

produces almost same performance as same GPU boards, CPUs are sometimes unreliable so that

the operating system assigns some tasks, which interrupt the parallel operations.

The results presented in Tables 2 and 3 indicate that for some algorithms, the parallelization on

CPU may be better than or comparable to GPU implementations. The performance of PPSO is

outperforms only at a high-level computing device NVIDIA Tesla K20.

Table 3.Average execution times of 10 independent Monte Carlo runs for CUDA parallel and OpenMP parallel

implementations of the PSO algorithm (ms)

Function

OpenMP - Parallel CUDA - Parallel

Intel Core

i5-2450M

AMD

Athlon X2

270

Intel Core

i5-3470S

GTX

550Ti

GT 610 GT

520MX

Quadro

K5000

Tesla

K20

f1 1437.09 534.5 324 236.63 361.39 554.91 456.51 170.89

f2 1482.34 509.5 297.04 244.09 384.72 573.66 450.4 170.32

f3 1640.3 635.5 347.95 258.72 411.652 608.13 497.69 192.46

f4 1195.69 460 220.35 354.03 433 355.6 496.86 191.16

f5 1343.19 554 258.54 295.44 488.28 360.58 591.53 200.76

f6 1225.09 572.5 222.8 306.52 509.25 353.78 590.59 203.6

f7 1293.39 609 233.14 312.37 516.3 331.66 591.02 203.55

f8 2038.4 781 327.85 357.32 624.33 425.36 763.43 263.78

f9 1893.09 842 439.85 466 884.16 633.43 1331.83 419.43

Conclusions

In this study, PPSO is implemented on eight different hardware devices (CPU: Intel Core i5-

2450M, AMD Athlon X2 270, Intel Core i5-3470s; GPU: GTX550Ti, GT610, GT 520MX,

Quadro K5000, Tesla K20), and three different software models (sequential, OpenMP and

CUDA). Nine benchmark functions are selected as test problems, and average execution time is

taken as a performance criterion. The results show that:

a) parallel implementations are faster than sequential codes as expected,

b) application oriented hardware might demonstrate unexpectedly the worst performance;

c) in general, GPU implementations outperform to CPU implementations, and

d) instead of mid-level GPU devices, the programmers can select CPUs as target devices, which

prove to be more cost-effective.

As a future study, codes on high-level CPU architectures will be implemented, and hybrid

implementations (using CPU and GPU cores) will be performed.

O.T. ALTINOZ and A.E. YILMAZ/ ISITES2014 Karabuk - TURKEY 1912

Acknowledgements

This study is made possible by a joint grant from TUBITAK (with Grant Nr. 112E168) and

ANCS-UEFISCDI (with Grant Nr. 605/01.01.2013). The authors would like to express their

gratitude to these institutions for their support.

References

[1] Holland J. Adaptation in nature and artificial systems An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence. MIT Press; 1992.

[2] Dorigo M. Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di

Milano, Italy, 1992.

[3] Storn R, Price K. Differential evolution - a simple and efficient heuristic for global

optimization over continuous spaces. Journal of Global Optimization 1997; 11: 341–359.

[4] Kennedy J, Eberhart R. Particle Swarm Optimization. Proceedings of IEEE International

Conference on Neural Networks IV 1995;1942–1948.

[5] Arora S, Barak B. Computational Complexity – A Modern Approach, Cambridge; 2009.

[6] Altinoz OT, Yilmaz AE, Ciuprina G. Comparison of particle swarm optimization on various

GPUs designed for add-on graphic boards. International Symposium on Computing in Science

and Engineering; 2013, 297-301.

[7] NVidia Corporation CUDA dynamic parallelism programming, NVidia, 2012.

[8] OpenMP, Architecture Review Board (http://www.openmp.org), version 3.0 has been

released in 2008.

