
988

Programming the Microchip Pic 16f84a Microcontroller As a

Signal Generator Frequencies in Railway Automation

High School of Transport "Todor Kableshkov"

1574 Sofia, 158 Geo Milev str.

Ivan Velev

 Abstract

Using a new method of obtaining a signal frequency by a programmable microcontroller

Microchip PIC 16F84A, data communication and management of projects in the transport

of high responsibility. It is operated in generating regular rectangular pulse Ti = TA, and

their duration is programmable and determines the frequency of the signal. The

microcontroller has its own LC clock, but for stable operation it is advisable to use an

external crystal resonator. We use system environment MPLab of Microchip, the

creation of the program itself. The program is written in assembly language, creating a
file with the extension. asm.

The advantages of this method are: simple structure, low cost, high reliability.

The computer model was tested in the software Proteus7.2.

Laboratory tests were performed with a physical model to confirm reliable

operation of the microcontroller.

 Key words: generator of f requency , microcontroller, programming, MPLab

1. Introduction

The theme of the report is formulated as a result of research work of the microcontroller

Microchip PIC16F84A.

PIC16F84A is an 8-bit RISC-company microcontroller Microchip, shown in Fig. 1 belongs to

the family of PIC16X8X PIC16FXXX. In addition, with this group belong also: PIC16F83,

PIC16CR83, PIC16F84, PIC16CR84.

The difference between the microcontrollers are mostly expressed in their operation and in the

capacity of the memory, and in that some of it is reprogrammable, and the others -. Of these

microcontrollers, PIC16F84A has the best features, namely:

maximum clock frequency of 20MHz (which corresponds to a minimum instruction cycle -

200ns);

a set of instructions 35, each of which has a length of one word;

All instructions are executed by the microprocessor cycle with the exception of the transitions

that take two cycles;

capacity of the program (Flash) memory - 1024 words;

68 bytes of RAM data items;

64 bytes EEPROM memory data items;

separate 14-bit instructions for highway and 8-bit data

hardware stack with eight levels;

Four sources of interrupting, respectively:

- From an external source (INT);

- Overflow of Timer 0;

- In case of the bits 4 to 7 of the PORT B;

- Upon completion of the entry in the EEPROM memory;

http://schools.guide-bulgaria.com/SW/Sofia-city/Stolichna/Sofia/Schools.aspx?6152=Todor_Kableshkov_University_of_Transport

989

More than 1000 cycles erase / write FLASH program memory and 1,000,000 to

EEPROM memory;

During storage of the data stored in non-volatile memory EERROM - more than 40 years;

Frequency of the supply voltage - from 2 to 5,5 V;

Consumption:

- Offer a small current of 2mA of power at 5 V and a clock frequency of 4 MHz

- Current 15tsA at 2V supply and clock frequency 32kHz;

- Current 0.5 / uA in SLEEP mode and supply voltage 2V.

Operating temperature range:

- 0 to +70 ° C - for commercial purposes;

- From -40 to +70 ° C - for industrial purposes.

In PIC microcontrollers and in particular in P1C16F84A basic connection diagram shown in

Fig. 1 contains frequency element (depending on the type of generator) and elements that

make up the chain reset (FT). As a timing element in this case is used quartz resonator - X1

running at 4MHz, This is the clock frequency that will work itself microcontroller.

Fig.1

Depending on the needs, can be used, and other resonators, but it should be borne in mind that

these will inevitably be accompanied with a change in timing of the program in question. This

is cause for ¬ From clock directly dependent time that runs every hin ¬ ling or alteration, and

hence the program. Provided circuit reset (FT) includes "Reset" button and RC built elements

Rl, C1. By pressing the "Reset" is carried FT MCLR. and the purpose of the capacitor C1 to

filter out transient input interference that microcontroller restarted. Also, thanks to the use of

this capacitor, this artificial cc realized externally FT at power (POR).

 In principle, the supply voltage to the microcontroller may be varied between 2 and 5V, but

in most cases (including here) is applied 5V. This value is suitable for two reasons: first, it

can relatively easily be obtained by using the popular stabilizer 7805 and a second, relatively

large part of the digital integrated circuits (which may be connected to microcontroller and to

work together with it), using such power. An exemplary embodiment of the pattern, which

can be prepared feeder voltage - is shown in Fig. 2.

990

 Fig.2

Here, the desired value or 5V CE prepared beforehand line voltage falls to a value of about 9-

12V, and then stand by Graecia bridge circuit (Budge) and filtered by electrolytic capacitor

C1, and thus formed upright and filtered voltage is fed to compensation stabilizer 7805 that

supports (stable) value of 5V, capacitors C2 and NW are to be used for additional filtration

and bipolar capacitor prevents the microcontroller from RF interference coming from the

mains. Thus, to achieve a better effect, it is recommended that the capacitor to be located as

close to microcontroller (dandruff when installing the circuit board).

2. Materials and Method

Generating A Square Wave With A PIC-Microcontroller

With this realization, we will demonstrate how a conclusion from the microcontroller can

receive and highlight, the simplest possible signal - a series of regular, rectangular pulses. I

will explain in more detail how it works with PIC16F84A microcontroller. The duration of

the pulses in this case can be set programmatically, and since it is a regular pulse (duration

and pulse pause pa equal to Ti = TA. When specifying its duration will be very clearly

defined and signal frequency (F = l / 2 Ti). this signal must be received on conclusion RB0.

Having in mind that this series is actually a sequence of zeros and ones of the same length,

then the receiving terminal and RB0, sequential programs need to reset and assigned to a unit

 Fig.3

Resetting the conclusions it with instructions "BCF PORTB, 0," and the establishment in one

- with similar such "BSF PORTB, 0". To obtain, however, the desired duration of the

pulse

(Tи) and pause (Tп), respectively, the desired frequency, it is necessary after every down or

reset the terminal to be measured given time interval (also called time-delay) equal to duration

pulse (or pause). Once the algorithm description, which will generate a pulse signal is

addressed and the program through which this algorithm will be realized.

At first LIST directive is through the type of the microcontroller (CPU).

On the next line, they shared program code includes the header file, "p16F84A.inc", contains

the definitions of all SFR registers (of the corresponding microcontroller) with their bits. This

and all other header files used for granted as they are set in the middle and MPLAB are

recorded on the hard disk for installation in. The Directive "__CONFIG_CP_OFF &

_WDT_0FF & _PWRTE_ON & XT OSC", to ASM-file information is added to the

configuration of the microcontroller, which is loaded directly used charter recording software.

In this case, the protection code (Code Protection) and timer WDT is disabled. "CP_ OFF &

_WDT_OFF", timer power-included "_PWRTE ON", and the type of generator c

"_XT_OSC" quartz resonator. In the section "Defining Constants and Variables" Now

therefore define the addresses used in the program general-purpose registers (GPR), plus the

values of the various constants. In this case, the specific program used a GPR register

991

(Counter) and two constants w and f. These constants will be used when setting a destination

(d), in the instruction requiring it. For example, if the result of the operation must be recorded

in the working register (W), instead of "dccfsz Counter, 0" will record "dcctsz Counter, w".

Similar will be recorded, where the result should be recorded in a register f, participating in

the operation "dccfsz Counter, 1" - "dccfsz Counter, f". On the following lines define the start

address of the recording of the program in the microcontroller and will move to the beginning

of the program. In this case, the instruction "goto start" will be located of address 000h,

corresponding to the reset vector. Thus, in the FT of the microcontroller will execute this

instruction first, thanks to which, the program will start from the address specified by the

label "start". The need for this conversion lies in the fact that the interrupt vector is located at

address 0004h, three upstanding cell vector FT. In this sense, if used continuously (they

currently do not have), address 0004h is reserved and can not contain any instructions from

the main program, so it should be skipped. To avoid fragmenting the program however, the

straight ss jump remaining three cells located between two vectors.

Thus the user program starts immediately after the address corresponding to the interrupt

vector. The program may be conditionally divided into three parts: "Start the program", "Used

subroutines" (they shared them can be assigned to program service of interrupt) and "Main

Program"

At the beginning of the program shall be called. starting initialization microcontroller. It

generally lies in charge of the register (OPTION_REG) - log options and initialization of

input and output ports.

When changing the status of individual bits can OPTION_REG:

- Authorize or prohibit the pull (pull-up) registers - bit 7;

- Sets the pulse for switching from terminal RV0) - bit 6;

- Selects the source clock so TMR0 - bit 5;

- Sets the pulse of TMR0 when working with an external clock 4-bit

- Selects the divisor function - bit 3;

- Sets the coefficient of the divisor - bits 2-0.

 l i s t p= 1 6 F8 4 A ; З а д а в а ти п а н а п роц е с о ра

 # in clu d e < p1 6 F8 4 A . i n c> ; Д е фи н и ц и и за SF R р ег и ст ри т е

 _ _ CONFI G _ CP_ O FF & _ WDT _ O FF & _ P WRT E_ O N & _ XT _ O SC

; ** * * ** * *Д е фи н и ра н е н а к он ста н ти и п р ом ен ли в и ** * * * * ** * * * * ** * * * * ** * * * * ** *

w EQ U 0

f EQ U 1

Cou nt e r EQ U H '0 C '

; ** * * ** * * * * ** * * * * ** * * * * ** * * * ** * * * * ** * * * * ** * * * * ** * * ** * * * * ** * * * * ** * * * * ** * *

; По т р еб и т е л с ка п р ог ра ма

; ** * * ** * * * * ** * * * * ** * * * * ** * * * ** * * * * ** * * * * ** * * * * ** * * ** * * * * ** * * * * ** * * * * ** * *

 ORG H '0 0 0 0 ' ; В е кт о р н а Н У

 g ot o s t a r t ; П р е х од към н а ч а л о т о н а п рог ра ма та

; ** * * ** * * * * ** * * * * ** * * * * ** * * * ** * * * * ** * * * * ** * * * * ** * * ** * * * * ** * * * * ** * * * * ** * *

; На ч а л о н а п р ог ра ма та

; ** * * ** * * * * ** * * * * ** * * * * ** * * * ** * * * * ** * * * * ** * * * * ** * * ** * * * * ** * * * * ** * * * * ** * *

s ta r t b s f ST AT US, R P0 ; Из б о р н а Ба н ка 1

 m o vl w B '1 1 0 1 0 1 1 1 ' ; 1 1 0 1 0 1 1 1 b -> W

 m o vl w OPT ION_ R EG ; (W) -> OPT ION_ REG

 b c f ST AT US, R P0 ; Из б о р н а Ба н ка 0

 c l r f PORT B ; 0 0 h -> P ORT B

 b s f ST AT US, R P0 ; Из б о р н а Ба н ка 1

 m o vl w B '1 1 1 1 1 1 1 0 ' ; 1 1 1 1 1 1 1 0 b -> W

 m o v wf T RISB ; R B7 -R B1 -В х од ов е, RB0 -Из х од

 b c f ST AT US, R P0 ; Из б о р н а Ба н ка 0

 g ot o ma i n

; ** * * ** * * * * ** * * * * ** * * * * ** * * * ** * * * * ** * * * * ** * * * * ** * * ** * * * * ** * * * * ** * * * * ** * *

; Изп о л зв а н и п од п р ог ра ми

; ** * * ** * * * * ** * * * * ** * * * * ** * * * ** * * * * ** * * * * ** * * * * ** * * ** * * * * ** * * * * ** * * * * ** * *

; - - - - - - Под п р ог ра ма " Wa i t " , ф ор ми ра ща в р е м еза д ръж ка о т 4 6 0 m s - - - - - -

Wa i t m o vl w D '7 ' ; 7 -> W

 m o v wf Cou nt e r ; (W) -> C ou n t er

 c l r f T MR0 ; 0 0 h -> T MR O

992

a ga i n b c f INT CON, T 0 IF ; Н у ли ра й б и т T OI F

lo o p bt f s s INT CON, T 0 IF ; Би т T OI F= 1 ?

 g ot o lo o p ; Н е , п р ов ери о тн ов о

 d e c f s z Cou nt e r , f ; Д а , C ou nt er= (C ou n t er)= 1 , Cou nt e r= 0 ?

 g ot o a ga i n ; Н е , и зп ъ лн и ц и к ъ ла о тн ов о

 r e tu r n ; В р ъща н е к ъм г ла в н а та п р ог ра ма

; ** * * ** * * * * ** * * * * ** * * * * ** * * * ** * * * * ** * * * * ** * * * * ** * * ** * * * * ** * * * * ** * * * * ** * *

; Гла в н а п р ог ра ма

; ** * * ** * * * * ** * * * * ** * * * * ** * * * ** * * * * ** * * * * ** * * * * ** * * ** * * * * ** * * * * ** * * * * ** * *

ma i n b s f PORT B ,0 ; R BO = 1

 ca l l Wa i t ; Изч а ка й 4 6 0 m s

 b c f PORT B ,0 ; RBO = 0

 ca l l Wa i t ; Изч а ка й 4 6 0 m s

 g ot o ma i n ; Пов т о ри ц и къ ла о тн ов о

 END ; Д и р ек ти в а за к ра й н а п р ог ра ма та

In this program are selected and are important following options:

- Internal clock module Timer 0 - TMRO content will be increased every cycle of the

instruction;

- Work with the divisor Timer 0;

-Factor of division: 1:256.

Although OPTION_REG loaded at the beginning of the program if at work and have to

change one or the above options, there is no problem it is loaded with a new value. The only

thing that should not be forgotten is the registry entries OPTION_REG be preceded by a

choice of Bank 1, as it is situated in it. The same goes for the record registers the direction of

data TR1SA and TRISB.

As in the case of the microcontroller is used only conclusion RB0, the only thing that should

be done in the init is the conclusion is defined as output (lines 22,23). You will note only that

the reset bit of the register for the direction of data defining the terminal as an output, and the

establishment of the same bit to "1", defined as an input terminal. If all terminals of a given

port are used as inputs, the latter does not need to be initialized at the start of the program

because the FT in the microcontroller, and all terminals are defined as inputs.

After starting initialization microcontroller begins execution of the main program (lines 42-

46). The latter consists of an endlessly repeating cycle ss, wherein ss performed sequentially

down to "1" and the reset terminal RB0.

To set the pulse duration and the pause time (time outputting RBO is maintained at "1" or "0")

after each instruction for setting or resetting the terminal, it is necessary to dispense the time

interval of a duration equal to the pulse duration (or pause). For this purpose, after each of

these instructions subroutine "Wait" (Wait - wait) by which a measured time interval desired.

Subroutine "Wait" is implemented using TMR0 (Timer 0) and can say it is used in almost all

of the programs and can realize time intervals of varying duration.

This program measures time by counting each full to register TMR0 (by value FFh to 00).

When it is used the fact that the TMR0 overflow takes some time, depending on the selected

division ratio, the initial value loaded into TMR0 register and a cycle time of instructions

(when working on Timer 0 with internal clock). The relationship between these three

parameters and time prepalvaps of TMR0 can cc gave the following relationship:

FoscKps
TMRTover

41
]0256[

wherein:

Tover - time which overflows (Overflow) TMR0 [ms];

(TMR0) - initial value loaded into register TMR0;

Kps - coefficient of division (for example, if a selected ratio 1:256, 1/Kps = 256);

993

4/F osc - a cycle of instruction [ms];

F osc - speed, microcontroller [MHz].

Using this expression and maneuvering some of the parameters (most often these are Kps or

(TMR0), can obtain many different values for the time interval Tover,

Taking into account the values of the parameters that are valid for consideration program: Kps

= l: 256, Fosc = 4MHz, (TMR0) = 0 we get;

sTover 65536
4

4
256]0256[ ,

Which means that an overflow TMR0 in the case would take approximately 65,5 ms.

In subroutine "Wait" for the right moment to full KBC TMR0 cc judged by determine flags

bit T0IF (INTCON <2>) to "1". This practice test is implemented in cycles, located in rows

34-35 or program. An adequate examination, however, before entering into this cycle should

be beaten T0IF reset "bcf 1NTCON. T0IF ".

In any overflow TMR0, the value of register "Counter" (with which he is charged at the

beginning of the subroutine - lines 30, 31) is reduced by one. If the result of this operation is

different from zero, the execution of the subroutine continues ("golo again"), but otherwise

the place back to the main program - "return" (46). Thus, in the subroutine "Wait" to form

a two-cycle:

- Through the first monitor overflow TMRO,

- By the second - for their number.

Since the value loaded into register "Counter" is 7 and the total time that will be

measured by the program in this case is 7x65, 5ms, approximately 460m from the foregoing

that, by changing the value loaded into register "Counter", the total time can be varied in the

range of 65,5 ms (at Counter = l) to 16,7 s (at Counter = 255).

This does not have time limits that can be obtained through this program. In case you need a

time interval less than 65,5 ms can maneuver through Tover and if necessary time interval

greater than 16,7 s, you just have to organize one, two or as many additional cycles need to

monitor number of overflow TMR0. For example, using one more cycle time interval of

maximum length will be: 255x255x65, 5ms, i.e. about 4259s (approximately 1 hour and 20

minutes).

Considering the time interval provided by one examined subroutine, we can determine the

frequency of the output signal received on conclusion RB0, namely:

Hz
tпtиT

f 1
10.46010.460

111
33










If necessary, the preparation of a higher (lower) than the frequency need to be reduced

(increased), the length of the time interval formed by the subroutine "Wait".

To be loaded into the microcontroller need to convert the file into machine code. This is also

done in the system environment MPLab, as the new file already obtained an extension hex.

994

Fig.4

Fig 4 shows how to generate a frequency 79 by microcontroller PIC16F84A and is committed

to the program Proteus 7.0

 Reference to a sites:

[1] PIC16F84A Data Sheet - Microchip-www.microchip.com

[2] www.constructor.bg/mk/

http://www.google.bg/url?sa=t&rct=j&q=%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5%20pic%20%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80%D0%B0%2016f84&source=web&cd=6&cad=rja&ved=0CFQQFjAF&url=http%3A%2F%2Fww1.microchip.com%2Fdownloads%2Fen%2Fdevicedoc%2F35007b.pdf&ei=ONRwUavxA4betAbewoD4DA&usg=AFQjCNEz3REHmX4s-B6x0eNax-a0RCOttQ

