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Abstract   
 
The mechanical properties of cantilevers used in atomic force microscopy (AFM) play a key role in 

determining their ability to perform specific tasks. In particular, the bending of the cantilevers, their 

resonance frequencies and characteristic functions have to be optimized for samples with a given linear 

spring constant and for different scanning speeds. This work treats uniform cantilevers having a 

rectangular section and presents their mechanical properties both algebraically and numerically using 

Finite Element Method with the software ANSYS. 
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1. Introduction  

 

In the last decade, several research groups observed that microcantilevers can transduce a number 

of different signal domains, e.g. mass, temperature, heat, electromagnetic field, stress, into a 

mechanical deformation: either a bending or a change in the resonance frequency.  

 

The cantilever beam is an extremely useful model such as a force sensor in atomic force 

microscopy.   

In this paper, we propose to model and simulate a cantilever with rectangular section. We will 

finish this work by a simulation using the Finite Element Method which will enable us to obtain 

the deformation and the stress repartition according to the force applied at the free end of the 

cantilever.  Figure 1 shows an image of five rectangular cantilevers with different lengths, 

designed for stress measurements. 

  

 
 

Figure 1. (a) SEM image of five rectangular cantilevers of different lengths. (b) Zoomed image of a cantilever with 

length L = 100 µm, Width w = 40 µm and thickness t = 0.5 µm[1] 

 

2. Cantilever beam flex under force applied  



732 

 

 

 

Under a specific force Fz applied (figure 2) at the free end of the cantilever, this last becomes 

deformed in each point.  
 

 
 

Figure 2. 1D representation of the cantilever Flex under Fz 

 

The equation of bending of the cantilever is given by [2]: 
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Eq. (1)  

Where: 

- The bending moment Mz(x) (expressed in N.m) is given by: 
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- The moment of inertia Iz (expressed with m
4
) is given by: 
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- The effective Young’s modulus Ê, is given by [3]: 

 

2(1 )E E 


                                                                                                                                       Eq.  (4) 

 

E is the Young’s modulus and υ the Poisson’s ratio of material 

 

2.1. Displacement  

 

The clamping of the cantilever imposes the following boundary conditions: 
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By solving  Eq. (1), we can get the flex δz(x) at any point of the cantilever, which is given by: 
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Eq. (5) 

 

At the free end of the cantilever, where x = L, the displacement is: 
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Eq. (6) 

 

2.2. Linear Spring Constant 

 

The cantilever linear spring constant, Kz, is defined as the ratio of the force applied at the free end 

to the resultant displacement at x = L: 
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Eq. (7)
 

 

 2.3. Slope 

 

The slope of the cantilever at a point x θz(x) is given by: 

 

(2 )
( ) ( ) .

2
z z z

z

L x x
x x F

x E I

 


 
 


                                                                                              

Eq. (8)

 
 

Which, at the free end of the cantilever, where x = L, gives: 
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Figure 3. Schematic of the maximum displacement, slope and the radius of curvature 
 

2.4. Cantilever Beam Stress Distribution 

 

The stress equation at any point of the cantilever is given by [4]: 
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Where z is the distance from the neutral axis. Since the maximum stress will occur at the upper 

and lower surfaces at the fixed end; zmax = ± t / 2. Therefore, the maximum stress can be 

expressed as: 
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Inserting Iz and Fz using Eq.  (3) and Eq.  (6), the stress equation reduces to: 
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This equation and equation 6 shows that the maximum deflection is most influenced by thickness 

and length, while the stress is most influenced by length. 

 

3. Simulation using ANSYS  

 

Then, in order to check the conformity of the algebraically method and validate the results 

obtained, we propose to solve the same model with another method, the finite element method. 

The obtained results are given in Figure 4, 5 and 6.  

 

 
 

Figure 4. Deformed and undeformed shape of the beam 

 

 
 

Figure 5. Flex of the beam 

 

 
 

Figure 6. Repartition of the stress 

 

 

Table 1. Comparison of theoretical and by simulation values of the linear spring constant 

 
 Kz ( N/m ) 

Theoretically 0.212 

By simulation 0.213 
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Conclusions 

 

In this work we have study the mechanical response of the cantilever. By modeling the 

mechanical behavior of cantilever theoretically and by simulation with the software ANSYS, we 

based on the linear spring constant and the stress repartition. The study of the stress repartition 

shows that the maximum is located at a rigid part of a cantilever. 

In conclusion, this paper has demonstrated that it is possible to model, with good precision, the 

mechanical behavior of the cantilever. 

The resolution of this model gives results which are in good accuracy with those obtained by 
numerical method. 
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