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Abstract  
 
In this study, the effects of cutting speed, feed rate and different types of coating materials on thrust 

force and hole diameter were investigated in drilling of AISI D2 cold work tool steel. In addition, the 

thrust forces and hole diameters were predicted by artificial neural networks (ANN) using 

experimental data. Uncoated, TiN, TiAlN monolayer and TiAlN/TiN multi-layer coated cemented 

carbide drills with diameter of 5 mm were used in drilling experiments. The holes were drilled at 

different combinations of four cutting speeds (50, 55, 60, 65 m/min), two feed rates (0.063 and 0.08 

mm/rev), and fixed depth of cut (7 mm). Experimental results showed that the lowest thrust forces and 

hole diameters were obtained with TiAlN/TiN multi-layer coated drills. After ANN training, it was 

found that the R
2
 values are very close to 1 for both training and test sets. RMSE values are smaller 

than 0.03, and mean error values are smaller than 5% for the test set. This case shows that ANN is a 

powerful method for prediction of thrust forces and hole diameters. 

 

Key words: Coatings, Thrust force, Hole diameter, Artificial neural network 

 

 

 

1. Introduction 

 

Cutting force is one of the most critical outputs in cutting process. Cutting forces affects many 

results such as power consumption, surface roughness, roundness error and hole diameter [1]. 

Therefore, it is very important to specify ideal cutting parameters in measurement of lower 

cutting forces [2, 3]. Through improvements in coating technology, high speeds are reached in 

metal cutting process. In addition, tool coatings provide longer tool life, better surface finish and 

lower cutting forces. For example, due to TiN coatings with high hardness, the tool has a good 

crater wear resistance and low coefficient of friction [4-6]. In addition to the high hardness, 

TiAlN coatings have chemical stability, longer tool life and excellent machining performance. [7, 

8]. The TiAlN coatings have also shown some interesting properties such as high fracture 

toughness, corrosion and wear resistance [9]. Also, the multilayer coatings were developed to 

provide higher wear resistance and hot hardness and lower chemical affinity with any work piece 

material [10]. It was reported that multi-layer TiN/TiAlN coatings had lower wear rate than 

monolayer TiAlN [11].   
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ANN is an algorithm developed to predict new data by means of learning from some series of 

experimental data without external help [12, 13]. In recent years, ANN is frequently used the 

industrial field. [14, 15]. Aykut et al. [16] used ANN for modeling the effects of machinability on 

cutting parameters for face milling of stellite 6 in asymmetric milling processes. Results showed 

that the ANN can be effectively used for predicting the effects of machinability on cutting 

parameters. Benardos et al. [17] presented a neural network modeling approach for the prediction 

of surface roughness in CNC face milling. ANN predicted the surface roughness with a mean 

squared error equal to 1.86%. Mounayri et al. presented an integrated product development 

system for optimized CNC ball end milling. First, the developed model was extended from flat-

end milling to ball-end milling. Second, the optimization was extended from 2D (speed and feed) 

to 3 (1/2) D (speed, feed, radial and axial depths of cut). Third, the modeling and simulation of 

the flat-end milling was extended to include more input variables. Finally, a new, more efficient 

and practical, neural network technique was introduced to replace the back-propagation neural 

network, and was successfully implemented for the case of ball-end milling. A very good match 

between predicted and experimentally measured process parameters was found [18]. 

 

The objectives of this study are to investigate the effects of cutting parameters on the thrust force 

and hole diameter, and to reduce number of complex and time-consuming experimental studies 

using ANN predictions. 

 

 

2. Materials and Method 

 

During experiments, AISI D2 cold work tool steel was used as workpiece material. In order to 

perform thrust force measurements, Kistler 9257B model dynamometer (Figure 2) was rigidly 

mounted to table of CNC vertical machining center.  

 

 
Figure 2.Kistler 9257B trademark dynamometer 

 

In order to fix workpiece to dynamometer, the specimens were cut with 170x100x12 mm 

dimensions, and two holes with 125 mm distance and 13mm diameter were drilled. Considering 

the hardness distribution around drilled hole, the distance between holes was carefully designed 

to be equal. So it was aimed to distribute the heat as equally as possible. The diameters of drills 

(d) were determined as 5 mm. In order to achieve ideal results at the end of drilling process, the 

length of hole was determined as 7 mm which is less than 15 mm (d x 3) [19, 20]. The chemical 
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composition of AISI D2 cold work tool steel is given in Table 1. 

Table 1. The chemical composition of AISI D2 cold work tool steel 

C% Si% Mn% Cr% Ni% Mo% V% 

1.003 0.134 0.271 11.88 0.193 0.693 0.713 

 

During the experiments, 4 different sets of drills belonging to Guhring Company (uncoated, 

PVD-TiN, PVD-TiAlN monolayer, and PVD-TiAlN/TiN multilayer coated). The dimensions of 

drills used in experiments are given in Figure 1 and Table 2. 

 

 
Figure 1. Drill dimensions 

 

The properties of sets with same dimensions are in Table 2. 

 
Table 2. Tool properties 

 Properties 

Tool type Twist drill 
Standard DIN 6539 

Coatings         Uncoated, TiN, TiAlN, TiAlN/TiN 
Diameter (d1, d2) 5 mm 

Tip angle 135
o
 

Helix angle 35
o
 

Helix length (l2) 26 mm 
Length (l1) 62 mm 

 

Additional to set properties, the properties of different coating materials are in Table 3 with 

details. 

 
Table 3. Coating properties of the coated drills. 

 TiN-PVD TiAlN-PVD TiAlN/TiN -PVD 

Tool material Cemented carbide Cemented carbide Cemented carbide 
Tool diameter (mm) 5 5 5 

Coating thickness (μm)         2.5 2.5  4 
Hardness (HV 0.05) 2200 3300  3600 

Coating type Monolayer Monolayer Multi-layer 
Number of layers 1 1 6 

Friction coefficient 0.25 0.3 0.3 

 

The experimental studies were performed in Johnford VMC–550 trademark CNC vertical 

machining center. The measurement of diameter of holes was performed with Mitutoyo 

trademark CRT-A C544 model 3D CMM (Coordinate Measuring Machine). Cutting speed and 

feed rate were determined after preliminary drilling experiments and examination of the 

catalogue of Guhring Company. During the experiments; 4 different drills, 4 different cutting 

speeds (50, 55, 60, 65 m/min), 2 different feed rates (0.08 mm/rev for 0.063), and constant depth 



520 

 

 

of cut (7 mm) were used, totally 32 experiments were performed. 
2.1. Artificial neural network 

 

ANN consists of artificial neurons. ANN has three main layers (input, hidden and output layers) 

[21]. Neurons in input layer transfer data from external world to hidden layer. In hidden layer, 

outputs are produced by using data from neurons in input layer, bias, and summation and 

activation functions. In the output layer, the output of network is produced by processing data 

from hidden layer and sent to external world. The summation function calculates net input 

coming to a cell. The most common function is to calculate the weighted sum. Inputs are the 

knowledge from other cells or external world to the input cells. Weights (w1, w2 …wn) are the 

values which determine the effect of input set or another processing element in previous layer on 

the processing element. Each input value is multiplied by weight value which connects it to the 

processing element, and then it is combined by summation function. Thus, net input of the 

network can be found. Activation function provides a curvilinear match between input and output 

layers. In addition, it determines the output of the cell by processing net input to the cell. 

Selection of appropriate activation function significantly affects network performance. Recently, 

logistic sigmoid transfer function has been commonly used as an activation function in multilayer 

perceptron model. For this reason, the logistic sigmoid transfer function was used in this study. 

There are many learning algorithms in order to determine weights in artificial neutral network. 

One of the most common learning algorithms is back propagation. The back propagation method 

updates the weights in accordance with difference between available data and network output. 

Learning parameter used in the method has a great importance in order to reach the optimal 

results. Learning parameter can be constant or dynamically updated in the model. There are 

various training functions such as Bayesian regularization, gradient descent with adaptive 

learning rule, gradient descent with momentum and adaptive learning rule, scaled conjugate 

gradient and Levenberg–Marquardt. In order to acquire the closest output values to experimental 

results, the best learning algorithm and optimum number of neurons in hidden layer was 

determined. For this reason, both SCG and LM learning algorithms and different numbers (3-10) 

of neurons in hidden layer were used in the built network structure for thrust force [22]. 

 
Table 4. Statistical data for the thrust force 

Learning 

algorithm 

Network 

structure 

THRUST FORCE 

Training data  Test data  

R
2
 RMSE MEP R

2
 RMSE MEP 

SCG 

3-3-1 0.018629 0.998214 6.454113 0.032572 0.993781 7.584499 
3-4-1 0.006953 0.999752 2.217500 0.024632 0.996319 8.218417 

3-5-1 0.009279 0.999558 2.605711 0.026415 0.995239 11.449130 
3-6-1 0.006191 0.999803 2.150960 0.020266 0.997291 9.010987 

3-7-1 0.006200 0.999803 1.917535 0.012098 0.999053 6.129984 

3-8-1 0.006173 0.999805 2.061780 0.025690 0.995700 12.296259 
3-9-1 0.006131 0.999807 2.037776 0.038658 0.990367 15.969927 

3-10-1 0.006004 0.999815 1.981031 0.026479 0.995166 11.053018 

LM 

3-3-1 0.015192 0.998814 4.865211 0.029990 0.994247 10.803812 
3-4-1 0.005517 0.999843 1.667968 0.028017 0.995080 10.860849 

3-5-1 0.006091 0.999809 2.045453 0.017124 0.998177 5.767293 
3-6-1 0.006107 0.999809 2.165246 0.016875 0.998160 6.068789 

3-7-1 0.005758 0.999830 1.782205 0.009454 0.999408 4.686014 
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3-8-1 0.005768 0.999831 1.645321 0.021584 0.997086 10.074594 
3-9-1 0.005818 0.999826 1.782259 0.022330 0.996934 10.294473 

3-10-1 0.005137 0.999865 1.164660 0.029407 0.994842 12.308946 

 

In consequence of trials, the best learning algorithm and network architecture for prediction of 

thrust force became LM: 3-7-1. Determination of the best learning algorithm and optimal number 

of neurons for the thrust force is demonstrated in Table 4. The best learning algorithms and ANN 

architecture for the hole diameter are given as LM: 3-5-1, respectively. Determination of 

percentages of training and test data has an important role for building of ANN architecture. 32 

experimental results were prepared for training and test data of ANN. In this context, 6 data for 

test and 26 data for training were randomly selected. The digits for the cutting tool to be entered 

into the ANN were denoted as TiN = 1 TiAlN, = 2, TiAlN/TiN = 3 and uncoated = 4 because 

they do not have numerical values [23]. All the values measured in the experiments are given in 

Table 5. 

 
Table 5. All experimental data 

Experiment 

no 

Coating 

material 

Cutting 

speed 

(m/min) 

Feed 

rate 

(mm/rev) 

Thrust 

force 

(N) 

Hole 

diameter 

(mm) 

1 TiN 50 0.063 575 5.0039 
2 TiN 55 0.063 570 5.0029 

3 TiN 60 0.063 568 5.0016 
4 TiN 65 0.063 576 5.0024 

5 TiN 50 0.08 694 5.0049 
6 TiN 55 0.08 674 5,0035 

7 TiN 60 0.08 668 5.0022 
8 TiN 65 0.08 669 5.0030 

9 TiAlN 50 0.063 585 5.0045 

10 TiAlN 55 0.063 581 5.0034 
11 TiAlN 60 0.063 578 5.0025 

12 TiAlN 65 0.063 590 5.0033 
13 TiAlN 50 0.08 705 5.0052 

14 TiAlN 55 0.08 685 5.0044 

15 TiAlN 60 0.08 680 5.0032 
16 TiAlN 65 0.08 690 5.0037 

17 TiAlN/TiN 50 0.063 573 5.0026 
18 TiAlN/TiN 55 0.063 565 5.0016 

19 TiAlN/TiN 60 0.063 554 5.0009 
20 TiAlN/TiN 65 0.063 568 5.0013 

21 TiAlN/TiN 50 0.08 686 5.0041 

22 TiAlN/TiN 55 0.08 671 5.0025 
23 TiAlN/TiN 60 0.08 665 5.0018 

24 TiAlN/TiN 65 0.08 669 5.0023 
25 Uncoated 50 0.063 771 5.0044 

26 Uncoated 55 0.063 755 5.0035 

27 Uncoated 60 0.063 747 5.0024 
28 Uncoated 65 0.063 731 5.0023 

29 Uncoated 50 0.08 900 5.0062 
30 Uncoated 55 0.08 875 5.0052 

31 Uncoated 60 0.08 850 5.0042 
32 Uncoated 65 0.08 820 5.0041 



522 

 

 

 

In back propagation model, scaling of inputs and outputs dramatically affects performance of 

artificial neural network. As mentioned above, logistic sigmoid transfer function was used in this 

study. One of the characteristics of this function is that only a value between 0 and 0.9 can be 

produced. In this study, the input and output values were normalized between 0 and 0.9 using 

formula in Eq. 4. 
  

1.0
d - d

 x 0.8 
maxmin

imin 











dd
ndi                              (4) 

 

Where, di and ndi are ith data and ith normalized data, respectively; dmin and dmax are minimum and 

maximum data in whole data, respectively. To understand whether an ANN is making good 

predictions or not, the test data that has never been presented to the network is used, and the 

results are checked at this stage. RMSE (root mean square error), R
2
 (determination coefficient) 

and MEP (mean error percentage) values have been used for comparisons [13].  

 

 

3. Experimental results and discussion 

 
3.1. Cutting Forces 

 

While the measured thrust force values were evaluated in drilling the AISI D2 cold work tool 

steel (Figure 3), the lowest thrust force values were obtained with TiAlN/TiN multilayer coated 

drills in all measurements due to their higher wear resistance. For all cutting conditions, it was 

found that thrust forces were always higher in uncoated drills than those in coated drills. The 

thrust forces obtained in TiN coated drills were better than those obtained in TiAlN coated drills. 

It is thought that thrust forces were found low as a result of low friction coefficients of TiN 

coatings [2, 4, 5]. The lowest value measured with a TiAlN/TiN coated drill is 554 N at feed rate 

of 0.063 mm/rev and cutting speed of 60 m/min. When evaluating the thrust forces according to 

feed rates (Figure 3), thrust force values remarkably increased with increasing feed rate. It can be 

thought that increasing chip section as a result of increasing feed rates affected thrust forces 

negatively. Although there are many effects affecting thrust forces, cutting speed and feed rate 

affect at most [24, 25]. Considering the thrust force, 0.063 mm/rev is the ideal feed rate. 
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Figure 3. Thrust forces according to cutting speeds and drill types, a) 0.063 mm/rev b) 0.08 mm/rev. 

The decrease of cutting speed increases the amount of temperature transferred to work piece, so it 

increase the temperatures in cutting zone [2]. The thrust forces slightly decreased until cutting 

speed of 60 m/min because plastic deformation facilitated with increasing temperatures in cutting 

zone. In addition, certain high levels of cutting speed are important lifetime of the drills [24-26]. 

At especially cutting speed of 65 m/min, the thrust forces increased owing to rapid tool wear.  

The best result was obtained at cutting speed of 60 m/min. 

 

3.2. Hole diameters 

 

When analyzing the hole diameters measured at the end of experiments, it is seen that there is a 

relationship between hole diameters and thrust forces. Higher cutting force leads to lower hole 

quality. When considering the values obtained in higher feed rates (Figure 4.), it is seen that 

increasing feed rates lead to increases in a hole diameter. In parallel with increasing cutting 

forces, hole diameter values also increased as a result of increasing feed rate. Higher feed rates 

lead to higher thrust forces. It can be said that the vibration as a result of increasing thrust forces 

may affect hole diameters negatively. The temperatures occurring as a result of increasing cutting 

speed lead to easy plastic deformation and removing of chips more fluently. So, the hole quality 

improves. It can be said that good hole diameter can be obtained with better chip removal. As a 

result of experiments, the hole quality was found better at cutting speed of 60m/min. 

 

 
 

Figure 4. Holes diameters according to cutting speed and drill types, a) 0.063 mm/rev b) 0.08 mm/rev. 

 

When comparing the diameters of holes drilled using different drill types, the quality of holes 

drilled with multilayer coated drills was found as better due to their lower thrust forces. Also it 

was seen that the hole quality was worse in uncoated drills. The best hole diameter value 

(Ø5.0009 mm) was obtained with TiAlN/TiN coated drill at cutting speed of 60 m/min and feed 

rate of 0.063 mm/rev. 

 

3.3. Prediction of thrust force and hole diameter with ANN 
 

The aim of using the ANN model is to test the ability to the thrust force and hole diameter. In this 

study, a computer program was developed in MATLAB platform to predict the thrust force and 
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hole diameter. The network has three input parameters. These are coating type (Ct), cutting speed 

(V) and feed rate (f). Optimal statistical values obtained for each output parameter are given in 

Table 6. As shown in Table 6, it was shown that R
2
 are close to 1 for both training and test data. 

Similarly, RMSE and mean error percentage are fairly low. All MEP results for training and 

testing data are within acceptable error limits (±5%).  

 
Table 6. Optimal results for thrust force and hole diameter 

                                        Training set                                          Test set 

Goal Learning 

algorithm 

Network 

structur

e 

RMSE R
2
 MEP RMSE R

2
 MEP 

Ff LM 3-7-1 0.005758 0.999830 1.782205 0.009454 0.999408 4.686014 
Dh LM 3-5-1 0.011883 0.999455 2.808310 0.028303 0.994872 4.481558  

 

The equations of the thrust force and hole diameter are given in Eq. (2-3). Also, the thrust force 

and hole diameter can be accurately calculated by these formulas. 

 

)8390.02.14542.54843.93560.12970.50283.57021078.1(e1

1
 




F7F6F5F4F3F2F1 xxxxxxx
Ff    (2) 

 

)9595.183.701438.67109.197821.31775631.13(e1

1
 




F5F4F3F2F1 xxxxx
Dh      (3) 

 

Where Fi (i = 1, 2, 3, ... , 6 or 7) can be calculated according to Eq. (11). 

 

Ei


e1

1
 Fi               (11) 

 

Where Ei is the weighted sum of the inputs, and is calculated via the equations in Table 6 and 7, 

respectively. The weight values of the input and hidden layers are given in the Table 6 and 7. 

 
Table 7. The weights for the thrust force 

 Ei= w1xCt + w2xV + w3xf + θi 

i w1 w2 w3 i 

1 -6.4684    -2.7617    -4.3080 16.4871 
2 10.6469    -1.4917     3.8784 -12.8674 

3 -3.5996    -7.1583     0.1896 2.3666 
4 -7.4703    -5.2997    -4.5306 9.4656 

5 11.4510    -0.4933    -1.0716 -8.9492 
6 7.0288    -0.4474    -3.4970 -2.2664 

7 -10.2174    -0.7649    -3.0773 2.1160 

 

Table 8. The weights for hole diameter 

 Ei= w1xCt + w2xV + w3xf + θi 

i w1 w2 w3 i 

1 -2.1053 -0.8394 1.6019 17.2975 
2 3.8276    51.1579 0.1055 -36.6803 

3 -5.2896     0.3984    -0.7148 2.7084 
4 3.4728    -0.5955     1.0886 -1.9598 
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5 -7.5575     2.7807    11.3536 -3.9671 

 

The comparisons of the thrust force and hole diameter values between the experimental values 

and ANN predictions are shown in Fig 6 and 7, respectively. As shown in these figures, the 

prediction capacities of the networks for the thrust force and hole diameter were fairly 

satisfactory. 

 

 
Figure 5. The performance of ANN for the thrust force 

 
Figure 6. The performance of ANN for the hole diameter 

 

4. Results 

 

In this study, an ANN was used to predict the thrust force and hole diameter in drilling of AISI 

D2 cold work steel with uncoated, TiN, TiAlN monolayer and TiAlN/TiN multi-layer coated 

cemented carbide drills. The results can be drawn as follows: 

 

 It was found that the lowest thrust force value was obtained with the TiAlN/TiN multi-layer 

coated drills due to its higher wear resistance. The optimal thrust force value was 554 N at 

the feed rate of 0.063 mm/rev and the cutting speed of 60 m/min in the conducted drilling 

experiments. 
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 The lowest value of hole diameter was also obtained with TiAlN/TiN multi-layer coated 

drills due to its lower thrust forces. The measured optimal hole diameter value was 

Ø5.0009 mm at a feed rate of 0.063 mm/rev and cutting speed of 60 m/min. 

 

 The optimal prediction results for the thrust force and hole diameter were obtained by 

network architectures of 3-7-1 and 3-5-1 with LM learning algorithms, respectively. In the 

ANN model, the determination coefficients for the thrust force and hole diameter were 

more than 0.99. MEP values for them values were within acceptable limits (±5%). The 

ANN results for both the thrust force and hole diameter were very satisfactory. 

 

The prediction results showed that ANN is notably powerful in prediction of thrust force and hole 

diameter. So, the use of ANN is highly recommended in prediction of them instead of the 

experimental set ups to measure thrust force and hole diameter. 
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