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Abstract: In this paper, the chaos control for the Gyroscope System is performed by using control 

methods based on sliding mode control and time-delay feedback control. The designed controllers for 

the complete chaos control of Gyroscope System are obtained using sliding mode control theory, 

Lyapunov stability theory and time-delayed feedback control theory. Since the Lyapunov exponents 

are not required for these calculations, the sliding mode control method is very effective and 

convenient to achieve chaos control of similar systems. In spite of its inherent limitations, Time 

Delayed Feedback Control can be applied successfully in many chaos control applications. So chaos 

control of the Gyroscope System is ensured completely by time delayed feedback control. Numerical 

simulations are presented to demonstrate the effectiveness and validate the chaos control of Gyroscope 

Systems. 
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1. Introduction 

In 1963, Lorenz found the first chaotic attractor, which is named as Lorenz chaotic system, in a 

three dimensional autonomous system when he studied atmospheric convection [1]. After 

Lorenz, chaos has been extensively interesting study area for many scientists and also, many 

chaotic systems were introduced such as Rössler system [2], Chen system [3], Lü system [4], 

Gyroscope System [5]. 

 

However, when chaotic behavior is sometimes undesirable, the chaotic behavior of system should 

be controlled. So, chaos control has become one of the much interesting research subject, since 

the control of chaotic systems is firstly proposed by Ott, Grebogi and Yorke [6]. Recently, many 

control methods are proposed for the control of the chaotic systems. The control strategies 

applied to control of chaos such as OGY method [6], adaptive control [7], passive control [8, 9, 

10 ], delayed feedback control [11, 12], backstepping control [13], sliding mode control [14, 15]. 

 

Chen investigated the chaotic behavior of two dimensional gyroscope system in 2002, which is 

called the gyro system [5].  In this paper, chaos in gyro system is controlled to zero equilibrium 

point by using delay feedback and sliding mode control. Based on delay feedback and sliding 

mode control theory, we prove that the designed controller can control gyro system to the zero 

equilibrium point. Numerical simulations are given for illustration and verification. 

 

This paper is organized as follows. Section 2 briefly introduced the mathematical model of 

gyroscope system. Sliding mode control design principles and time delay feedback control theory 

are presented in Section 3. The controller is designed to control gyro chaotic system based on 
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time delay and sliding mode control method and numerical simulations for chaos control is given 

in section 4. In section 5, conclusions are finally given. 
 

 

2. Mathematical model of Gyroscope System  

 

The chaotic dynamics and bifurcation diagram of this symmetric gyro system are extensively 

studied in ref [5, 16]. The gyroscope system (called gyro) is given by: 

 

 ̈             

     
           ̇     ̇

               .                       (1) 

 

For simplicity, x1=θ, x2= ̇ notations are introduced. By using these notations, the equation 

governing the motion of the gyro after necessary transformation is given by as follow: 

 
  ̇                                                                                                                                                 
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}                 (2) 

 

 

3. Sliding Mode Control Design For Chaos Control of in Gyroscope System  

 

Suggested Gyroscope System chaotic system is described in equation (4). Thus the controlled 

chaotic system of Gyroscope System is attained as follows: 

 
  ̇                                                                                                           

  ̇             
 

      
          

                          
}                 (3) 

 

where u1, u2, are control signals. 

 

e = x- xd                                      (4) 

 

where e =[e1 e2]
T
 is the tracking error vector. The error dynamics may be written as below: 

 

ė= ẋ- ẋd = Ax + Bg + Bu - ẋd                         (5) 

 

where A is the system matrix, B is the control matrix, and g represents the system nonlinearities 

plus parametric uncertainties in the system. The control problem is to get the state x= [x1 x2]
T
 to 

track a specific time varying state xd= [xd1 xd2]
T
 in the presence of nonlinearities. 

 

A = [
     
    

];  B=[
  
  

]   g= [
 
 
]                
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Now, a time varying proportional plus integral (PI) sliding surface s (e, t) ∈ R2 is defined by the 

scalar equation s = s (e, t) as 

                    ∫              
 

 
     (6) 

 

where K∈R3x3, which must satisfy det(KB) ≠ 0, is a gain matrix, and L ∈ R2x2, which must 

have a stable A-BL, is a gain matrix, namely, the eigenvalues λi (i=1,2,3) of the matrix A-BL are 

negative (λi |< 0). It is well known that when the system operates in the sliding mode, the sliding 

surface and its derivative must satisfy s = ṡ = 0 [17, 18]. The equations may be written as below: 

 

ṡ = KBg + KBLe + KBu + KAxd - Kẋd = 0    (7) 

 

Since KB is non-singular, the equivalent control in the sliding mode is given by 

 

ueq= -[ ĝ + Le ] - (KB)
-1

 [ KAxd - Kẋd ]    (8) 

 

where g is not exactly known, but guessed as ĝ, and the estimation error on g is presumed to be 

restricted by some known function G such that ǁ g - ĝ ǁ ≤ G. In addition, it reveals that the 

stability of systems in the sliding motion can be guaranteed just by selecting an appropriate 

matrix L using any pole assignment method. To ensure the achievement of the reaching condition 

indicated in equation (7), a control law is proposed as: 

  

u = ueq - (KB)
-1

[ε + ǁ KBG ǁ ]sign(s)      (9) 

where  ε > 0. 

 

 

4. Time-Delayed Feedback Control Method For Chaos Control of in Gyroscope System  

 

Pyragas (1992) showed that chaotic behavior could be controlled by using time delayed feedback 

control method [19]. The control of chaotic Gyroscope System is achieved using time delay 

feedback control theory. The controlled Gyroscope System model given by 

 
  ̇                                                                                                                                                            

  ̇             
 

      
          

                         
}               (10)               

 

The controller u(t) is designed based on time delay feedback control[**] as in Eq. 

 

                                                              (11) 

 

u(t) obtained that the difference between current value of system variable x2(t) and its τ seconds 

previous multiplied by constant Kc, where Kc is feedback gain. 
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5. Numerical Simulations for Chaos Control of in Gyroscope System 

 

In this section, the gyroscope system is controlled to a chaotic orbit by a Sliding mode control 

and time-delayed feedback control. Numerical simulations are applied to confirm the effective 

and the feasible of the proposed control methods.  

 

5.1 Applied sliding mode control method to the Gyro system  

 

Equation (4) is substituted with the numerical values as follows: 

 
  ̇                                                                                                           

  ̇             
 

      
          

                          
            (12) 

 

Where α=10, c1=1, c2=0.05, β1=1, f1=35.5, ω1=2 

 

A =[
     
   

];  B=[
  
  

]    g= [
 
 
] 

 

Where              
 

      
     

                        

 

Here, the gain matrix K is chosen as K = diag (1, 1) such that KB = diag (1, 1) is nonsingular. 

The desired eigenvalues of the matrix A-BL are taken as P = [-5 -5.001]. The gain matrix L is 

found as follows by using the pole placement method:  

 

L = [
  
      

]. 

 

As a result, the matrix K(A-BL) is computed as K(A-BL) = diag (-5, -5.001). The PI switching 

surfaces are obtained as follows:  

 

      ∫                      
 

 

      ∫             
 

 
     

}                                          (13) 

 

For this numerical simulation, the initial points of the system are employed as [x1(0), x2(0)] =     

[-0.2, 0.1]. The constant controller coefficient ε is selected as ε<0.5. The reference states xd1, xd2, 

xd3 are selected as xd1 = xd2 = xd. Therefore, the control signals may be attained as: 
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5.2 Applied Time-Delayed Feedback Control method to the Gyro system  

 

The equation (10) which has been added the controller is expressed with the numerical values as 

follows: 

 
  ̇                                                                                                                                                            

  ̇             
 

      
          

                         
}               (15)               

 

Where α=10, c1=1, c2=0.05, β1=1, f1=35.5, ω1=2 

 

The controller u(t) is designed based on time delay feedback control [19] as in Eq. 

 

                                                              (16) 

Where     ;   0.5 

 

According to numerical simulations, time series of Gyro system have been obtained as 

respectively shown in Figure 1; phase portrait and time series  of without controlled Gyro system, 

in Figure 2; controlled Gyro system with SMC, in Figure 3; controlled Gyro system with time-

delayed feedback control, in Figure 4; applied the control signals to the Gyro system after 10s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Time series of without controlled gyro system in x1-x2-t plane b) phase portrait of gyro system 
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Figure 2. Time series of controlled gyro system in x1-x2-t plane with SMC after 10s 
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6. Conclusions 

 

In this paper, effective control techniques have been suggested to stabilize chaos Gyroscope 

chaotic system. A sliding mode control law is applied by using a PI switching surface.  So, it is 

found the stability of the error dynamics in the sliding mode that easily ensured by the PI 

switching surface. Designed SMC controller is rather satisfactory to a nonlinear controller to 

eliminate the undesirable chaotic oscillations. Several simulations results are presented. The 

simulation results indicate that the proposed control scheme works well. The control scheme was 

able to stabilize the chaotic Gyroscope System around user-defined set-points. In addition, the 

control was able to induce chaos on the stable Gyroscope System. In this paper, proposed S.M. 

Controller can be performed in similar systems. Time-delayed feedback control can be easily 

implemented to control periodic orbits in complex dynamical systems. Therefore, this time-

 
Figure 3. Time series of controlled gyro system in x1-x2-t plane with time-delayed feedback control after 10s 
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Figure 4. Applied the control signals to the gyro system after 8s 
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delayed feedback control is very useful. Finally, numerical simulations are provided to show the 

effectiveness of proposed methods. The reaching results are satisfied in view of. 
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