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Abstract: 
 
Vertical shafts are widely used as temporary or permanent earth retaining structures for different 

engineering applications (e.g. tunnels, pumping stations and hydroelectric projects). Determining the 

earth pressure acting on the shaft lining system is essential to a successful design. Several theoretical 

methods have been proposed for the calculation of the active earth pressure on cylindrical retaining 

walls supporting granular . However, the earth pressure distribution obtained using these methods was 

found to vary significantly and depend on the adopted method of analysis. In addition, the required 

wall movement to reach the calculated pressures is yet to be understood. In this paper, numerical 

computations using FLAC are reported to evaluate the evolution of the distribution of earth pressure on 

a cylindrical wall embedded in granular material and subjected to radial displacement.  The numerical 

results are discussed and compared with recent experimental results and theoretical solutions 

  

 

Key words: Axisymmetric earth pressure, numerical modellig, soil, interaction, plasticity. 

 

 

1. Introduction  

 

Circular excavations are often carried in the construction of underground storage tanks, hydraulic 

and power facilities, manholes, inspection or access chambers and service entrances. As such, 

circular vertical shafts are often employed as the retaining systems for these excavations and 

adopted as the starting and ending sections for underground tunnelling and pipe jacking projects. 

Several attempts have been made to extend plane strain active earth pressure methods to study the 

active earth pressure against cylindrical shafts in cohesionless media. Westergaard [1] and 

Terzaghi [2], proposed analytical solutions; Prater [3] used the limit equilibrium method; and 

Berezantzev [4], Cheng and Hu [5], Cheng et al. [6], Liu and Wang [7], Liu et al. [8]  used the 

slip line method. In contrast to the classical earth pressure theories, where the active earth 

pressure calculated using the Coulomb or Rankine method are essentially the same, the 

distributions obtained for axisymmetric conditions may differ considerably depending on the 

chosen method of analysis, as discussed below. In addition, the required wall movement to reach 

the calculated pressures is yet to be understood. The objective of this study is to  investigate the 

active earth pressure on cylindrical shaft linings installed in cohesionless ground and the required 

displacement for establishing active conditions by numerical approach using the explicit finite 
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difference code FLAC [9] (Fast Lagrangian Analyses of Continua). The results are compared to 

published experimental results. 

.  

 

2. Theoretical methods 

 

The earliest effort to investigate the state of stress around a cylindrical opening in soil was made 

by [1], who studied the stress conditions around small unlined drilled holes, based on the 

equilibrium of a slipping soil wedge. Terzaghi [2]  extended Westergaard’s theory to large lined 

holes, thus proposed a method to calculate the minimum earth pressure exerted by cohesionless 

soil on vertical shafts liners. He determined the equilibrium of the sliding soil mass assuming 

 = v= 1 and r =3 inside the plastic zone and employing the Mohr–Coulomb yield criterion. 

Terzaghi proposed the use of a reduced angle of internal friction of the sand,          for 

30° < Ø < 40°,  to account for the effect of the nonzero shear stresses in the solution. 

 

Berezantzev [4] extended the slip line method to calculate the earth pressure acting on cylindrical 

walls. Under active conditions Berezantzev assumed that inside the plastic zone the tangential 

and radial stresses are equal to the major and minor principal stresses, respectively ( = v= 1 

and r =3). Thus , which is defined by the stress ratio  /v is equal 1. The governing 

equations took the form of two partial differential equations that he solved using the Sokolovski 

step-by-step computation method.  

 

Prater [3] using limit equilibrium adapted Coulomb wedge theory for axi-symmetric conditions 

assuming a conical failure surface. Prater argued that  is a decisive parameter whose value 

should range between Ka and Ko and not equal to unity as was implicitly assumed by [2,4].  

 

 Cheng and Hu [5]  extended Berezantzev’s theory to develop a more general solution 

considering a variable earth pressure coefficient, . They found that the case of  = 1 produces 

the lowest lateral pressure. The upper and lower bounds of the lateral earth pressure can then be 

obtained using = Ko and = 1, respectively. For  = 1 the earth pressure is the same as that 

calculated using the Berezantzev method. 

 

 

3. Experimental investigations 

 

Several studies have been conducted to measure the earth pressure distribution due to the 

installation of a model shaft in granular material. Fujii et al. [10] conducted centrifuge tests to 

study the effects of wall friction and soil displacements on the earth pressure distribution around 

rigid shafts. The experimental results for dense sand ( = 42°,  = 14.7 kN/m
3
) (Fig. 1) show 

good agreement with the theoretical solution [4]. Little change in the measured earth pressure 

was reported at displacements greater than 1% of the wall height, H (6.6% of the shaft radius), 

and the wall friction was found to have a negligible effect on the measured earth pressure 

distribution. 
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Imamura et al. [11]  Imamura developed a model shaft similar to that used by [10]. They 

concluded that the earth pressure decreases with increasing wall displacement until it coincides 

with Berezantzev’s solution at a wall displacement that corresponds to 0.2% of the wall height, H 

(1.6% of the shaft radius). 

 

 
Figure 1. Semi-cylindrical model shaft and earth pressure distribution for smooth and rough walls [10]  

 

Chun and Shin [12]  performed model tests to study the effects of wall displacement and shaft 

size on the earth pressure distribution using a mechanically adjustable semi-circular shaft.  The 

experimental results indicate that earth pressure decreased with increasing wall movement and 

became minimum when the wall movement reached 1.87 mm corresponding to 0.25% of the wall 

height. In figure 2, the earth pressure calculated from [2,4]  methods are shown for comparison. It 

appears from this comparison that the measured earth pressure decreases with increasing wall 

displacement until it coincides between  Berezantzev and Terzaghi’s solutions at a wall 

displacement that corresponds to 0.25% of the wall height, H. 

 

Tobar and Meguid [13]  conducted a series of tests under normal gravity to investigate the 

changes in lateral earth pressure due to radial displacement of the shaft lining. The developed 

apparatus allowed for the modelling of both the full geometry of the shaft and the radial 

displacement of the lining. For  coarse dry sand ( = 41°; = 14.7 kN/m
3
), the experimental 

results showed that the axisymmetric active earth pressure fully developed when the wall 

displacements, S, ranged between 0.2% and 0.3% of the wall height, H. They concluded that for 

S≥.1% H, the measured pressures (figure 3) fell into the range predicted by Cheng and Hu 

(2005); and that at S≥.3% H, the measured pressures closely followed the pressure distributions 

calculated using Terzaghi (1943) [2]  and Berezantzev[4]  (1958) methods. 

 

By comparing the experimental results with the analytical solution of [3] Prater (1977), which is 

based on Coulomb’s wedge analysis under axisymmetric conditions and a value of λ=Ko, it can 

be seen that the solution computes a zero value of earth pressure at a normalized depth h /a of 

about 9, which is considered inconsistent with experimental data. 
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Figure 2. Semi-cylindrical model shaft and the measured earth pressure using a shape aspect ratio, H/a, of 4.286 [12] 

 

 
Figure 3. Comparison of measured and theoretical earth pressures along the shaft at (a) 1-mm; (b) 2-mm; (c) 3-mm; 

and (d) 4-mm wall movement [13] 
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Using different values of the coefficient λ, Cheng and Hu (2005) [5]  proposed bounds for the 

earth pressure distribution based on slip line analysis. The upper bound is derived using λ = Ko, 

whereas the lower bound is derived using λ=1, which reduces the solution to the one proposed by 

[4] Berezantzev (1958). 

 

Based on the above studies it can be concluded that, for axisymmetric excavations under active 

conditions, the theoretical and the experimental results showed that the axisymmetric active earth 

pressure distribution for a cylindrical walls does not increase linearly with depth as it does in long 

vertical walls under plane strain conditions. As the soil movement increases, the normalized 

pressure distribution reduces until a constant value (independent of the depth) is reached at the 

ultimate state. However theoretical solutions show high discrepancy related to the hypothesis 

concerning the lateral stress coefficient which cannot be determined from the theories. From the 

theoretical and experimental overviews, numerical analysis are carried out with no hypothesis on 

the lateral stress coefficient and the results are compared with theoretical and the experimental 

results. 

 

 

4. Numerical modelling  

 

The experimental study of the earth pressure distribution on cylindrical shafts reported by  Tobar 

and Meguid (2011) [13] are numerically investigated by using the computer code FLAC which is 

a commercially available finite difference explicit program.  

 

The soil behaviour is modelled by the elastic-perfectly plastic Mohr–Coulomb model encoded in 

FLAC code. All subsequent results are given for =14.7kN/m
3
, elastic bulk modulus K = 30 MPa 

and shear modulus G = 11.25 MPa , internal friction angle =41° , cohesion c=0. 

 

The proposed modeling procedure of the active earth pressure distribution on cylindrical shafts 

follows two steps: 

 In the first one, the shaft installation and the geostatic stresses are computed assuming fixed 

shaft connected to the soil via interface element. At this stage the strength of the interface 

elements are assigned to be null and some stepping is required to bring the model to 

equilibrium; 

 In the second step, a radial velocity of 10
-6

 m/step towars the shaft axis was applied to the 

gridpoints representing the wall shaft until a steady plastic flow is achieved (i.e. until a 

constant pressure on the shaft wall is reached). As the level of errors in such calculation 

scheme by FLAC depends on the applied velocity, a low velocity is recommended. 

 

The mesh size is fine near the wall where deformations are concentrated. As a general rule for the 

boundary conditions, the bottom boundary is assumed to be fixed in the vertical direction, the 

right and left lateral boundaries are fixed in the horizontal directions. For axi-symmetry problem, 

structural elements incorporated in FLAC don’t work. Therefore, the shaft wall is modelled by 

thin fixed membrane elements connected to the soil grid via interface elements attached on both 
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sides. Fig. 4 shows the axi-symmetric mesh retained for this analysis and plastic zone 

corresponding to limit state. 

 

 
Figure 4. Mesh used and plastic zone 

 

 
 

Figure 5. Active earth pressure distribution Figure 6. Comparison of active earth pressure distribution 
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Fig. 5 shows the numerical results of the active earth pressure distribution with shaft depth for 

two values of the earth pressure at rest Ko=0.5 and Ko=1. The results confirm that variation in 

practical range of the earth pressure coefficient at rest K0 do not have any significant influence on 

the axi-symmetric active earth pressure distribution.  

Fig. 6 shows the comparison  the present results to theoretical solutions [2,3,4] and experimental 

results [13], it can be noted that the present numerical results agree well  with the measured earth 

pressure [13] and the solutions [2,4], both assuming a value of λ equal to unity,  provided that 

enough soil movement is allowed. As shown in Fig. 6, Prater’s method predicts a different 

pressure distribution with a zero earth pressure at some depth below the surface. 

 

The radial, tangential and vertical stress distributions in the medium and in radial direction at the 

half of the model height are plotted in Figs. 7 and 8 respectively. The results show a slight 

increase of the vertical stress (v) in the elastic region near the elastic-plastic interface followed 

by a drastic reduction in the plastic region. This behaviour indicates that arching in vertical 

planes is formed. The tangential stresses ()  increase toward the shaft wall in the elastic region, 

followed by a brutal decrease and converge to vertical stresses in the plastic region. Also, the 

radial stresses (r) decrease toward the shaft wall accentuated in the plastic zone. 

 

 
-a- v distribution 

 
 

-b-  distribution -c- r distribution 

Figure 7. Stresses distribution at limit state 
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Figure 8. Stresses distribution at 0.4h from the base 

 

 

Conclusions  

 

A numerical study was performed for a physical model to investigate the earth pressure 

distribution on a cylindrical shaft. The results were compared with both some theoretical 

solutions and experimental measurements of the physical model. The numerical, the theoretical 

and the experimental results show that the axi-symmetric active earth pressure distribution for 

cylindrical shafts does not increase linearly with depth as it does plane strain conditions. The wall 

movement induces a reduction of the earth pressure distribution until a constant value at the 

ultimate state for high friction soil. The theoretical solutions show high discrepancy related to the 

hypothesis concerning the lateral stress coefficient = /v which cannot be determined from the 

theories. A good agreement was noted between the present numerical modelling results, 

experimental results [13]  and theoretical solutions of [2,4]  which both assuming a value of λ 

equal to unity. FLAC numerical results show a drastic reduction of the vertical stress (v) and 

tangential stresse ()   in the plastic region against the shaft wall and confirm the hypothesis 

= /v=1 assumed by [2,4].   
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