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Abstract  
 
In this work, the objective of the control optimized problem is to determine the conduction coefficient 

in a heterogeneous solid for heat transfer conduction, by the inverse method using the conjugate 

gradient method.  The finite differences method is employed to determine the temperature field in a 

solid flat plate, for given model of thermal conductivity. The obtained results for a discretization 

scheme of 300 knots for the time and 20 knots for the space show that the calculated values of thermal 

conductivity and temperature coincide perfectly with the corresponding exact values. The difference is 

about 2.5% for temperature and 0.7% for thermal conductivity. 
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1. Introduction  

 

Recent advances in materials processing technology allowed design and manufacturing of new 

materials systems which can withstand high temperatures and large temperature gradients. 

Composite materials like functionally graded material or FGM are a new generation of 

composites where the volume fraction varies gradually, which gives a micro structural non-

uniformity on the surface. 

In an ideal composite material, the properties of the material may vary in a one dimension. A 

region of smooth transition between a pure metal and a pure ceramic may lead to a 

multifunctional material that combines high desirable properties of temperature and thermal 

resistance of a ceramic, with the hardness of fracture and strength of metal [1]. Numerical 

analysis can be a perspective method for the design of these materials and the understanding of 

their behavior. 

In the case of exponentially graded materials, the Green's function (GF) is expressed as the 

superposition of the Green's function (GF) for homogeneous material and additional terms due to 

the graded material [2]. The numerical implementations are performed using a Galerkin (rather 

than collocation) approximation. A number of examples have been carried out. The results of 

some specific test problems agree within plotting accuracy with available analytical solutions. 

For a broad range of functional material variation (quadratic, exponential and trigonometric) of 

thermal conductivity and specific heat, the non-homogeneous problem can be transformed into 

the standard homogeneous diffusion problem. A three-dimensional boundary element 

implementation (BEM), using the Laplace transform approach and the Galerkin approximation, is 

studied by A. Sutradhar et al.  [3].  
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Some studies have been conducted for continuously non homogeneous functionally graded 

materials (FGM), by using the meshless local boundary integral equation method [4].  

The inverse methods combined to iterative methods such as Newton technique are also a part of 

tools for identifying thermophysical properties such as thermal conductivity [5]. 

The main objective of this study is to determine the conduction coefficient in a heterogeneous 

solid for heat transfer conduction, by the inverse method using the conjugate gradient method.  

The finite differences method is employed to determine the temperature field in a solid flat plate, 

testing different models of thermal conductivity suitable for their applications.  

 

 

2. Formulation of the direct problem  

 

The considered direct problem concerns the research of temperature profile in a heterogeneous 

solid wall submitted to conditions imposed on its surfaces. 

The Heat conduction, modeled by the phenomenological law of Fourier, involves the intrinsic 

properties of the material such as thermal conductivity which is variable and the specific heat 

considered as constant  (ρc = 1). 

In order to build the coefficient of heat conduction )(x , the solid is subjected to a heat flux  tx,  

on two walls, at an initial temperature of the surface. 

The dimensionless equation of heat conduction in a heterogeneous solid is given by: 
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Where : 

T(x,t) : dimensionless temperature 

x : dimensionless coordinate 

t : dimensionless time 

tf : final time 

(x) : dimensionless thermal conductivity 

 

 

3. Optimization method and sensitivity problem 

 

The inverse problem can be formulated into an optimization problem, where the unknowns are 

determined by minimizing the difference between the measurements from the observation of the 

physical system (exact solution) and the direct model. The objective of the control problem is to 

determine the conduction coefficient in a heterogeneous solid for heat transfer conduction, by the 

inverse method using the conjugate gradient method. 

The least squares criterion  )(xJ   is introduced to minimize the difference between the 

calculated temperature ),( txT  (simulated solution) and the temperature calculated by the exact 

model. 
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The objective here is to minimize the criterion so that it converges to the desired solution, i.e. 

)(x  approximates the real value (desired) such that: )(inf)(  JJ   

The directional derivative of Gâteau in the direction of )(x is defined in the linear case by [6]: 
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(3)

J   : Gradient of the criterion J  

 

The sensitivity problem is obtained by differentiating the direct problem (Eq. 1) with respect to 

Temperature ),( txT  and thermal conductivity )(x  :  
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With boundary conditions : 

 0)0,( xT  (5) 
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(7) 

 

T is the solution of the sensitivity equation. It is used to calculate the depth of descent  

 

 

4. Adjoint problem and gradient equation 
 

Adjoint problem and gradient equation are obtained by multiplying sensitivity equation (4) by 

Lagrange multipliers (or adjoint functions) P(x,t), and adding the criterion equation (3), to yields 

the following result : 
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Involving the integration by parts and putting ti = 0, we obtain after some simplifications: 
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Other simplifications are also possible dealing with the initial and boundary conditions such as: 

 0)0,( xT  (10)                                       
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4.1. Adjoint equation  

 

By imposing the boundary conditions of the adjoint equation, we obtain the adjoint equation and 

the gradient criterion: 
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Conditions of the adjoint equation are derived from the simplification of equation (9): 
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4.2. Gradient equation  

 

Equation (9) provides the variation of the criterion: 
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The identification with equation (3) gives the gradient of the criterion:: 
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4.3. Conjugate gradient method  

 

The iteration process based on the conjugate gradient method  is used for estimation of )(x  by 

minimizing the functional  J [6, 7]: 
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Where   is the step size defined by [7] : 

 

 
1

0

1

2

0

( ) .

( ) .

tf

ti

tf

ti

T T Y dxdt

T dxdt

 








 

 
 (20) 

And d
n
 (x) the direction of descent given by :  

  )()()( 1 xdxJxd nnnn    (21) 

The conjugate coefficient is determined from [5, 6] : 
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To perform the iterative calculation of the equation (19), we have to solve two equations, the 

adjoint equation which determines the direction of the descent and the sensitivity equation 

involving the determination of step size. 

 

 

5. Numerical Resolution  

 

The numerical resolution based on discretization by finite difference scheme can approach direct, 

adjoint and sensitivity equations. 

 

Direct problem: 
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This is a tridiagonal system of equations (TDMA), which is solved by the Thomas algorithm 

based on Gaussian elimination [6]. 

 

Adjoint equation: 
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with : 

  )(.),(),( ixxtxYtxTEr    : difference between estimated and exact temperatures 

 

The boundary conditions are: 
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Sensitivity equation : 
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The boundary conditions are: 
0)0,( xT                    

0
),0(

)0(
),0(

)0( 









x

tT

x

tT 
         

0
),1(

)1(
),1(

)1( 









x

tT

x

tT 
  

 



289 

6. Results and discussion 
 

To validate the numerical model, we use the exact solution given by: 
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with : a= -0.45   b=-5   c=5..05      

 

 

 

 

 

 

The obtained results for a discretization scheme of 300 nodes for the time and 20 nodes for the 

space show that the calculated values of thermal conductivity and temperature coincide perfectly 

with the corresponding exact values (Figures 1  and 2). The difference is about 2.5% for 

temperature (Figure 3) and 0.7% for thermal conductivity (Figure 4). 

 
Figure 1. Exact and calculated thermal conductivity 
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Figure 2. Exact and calculated temperature   

 

 
Figure 3. Evolution of temperature difference according to the number of iterations 



291 

 
Figure 4. Evolution of thermal conductivity difference according to the number of iterations 

 

 

Conclusions  

 

The results validated by comparing the profiles of exact temperature with those of estimated 

solution, were used to support the reliability of this approach that allows, through a technique 

based on the inverse problem, of estimate the thermal conductivity. 
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